对锻造态的粉末冶金Ti-45Al-7Nb-0.3W(摩尔分数,%)合金进行后续热处理,研究热处理时间和热处理温度对合金组织演变的影响,利用扫描电镜及透射电镜对合金显微组织进行观察。结果表明:在1230~1260℃温度区间热处理可消除锻造态合金的少量β相。在该温度区间进行等时热处理时,随着热处理温度的升高,α晶粒和γ晶粒迅速长大,γ相体积分数急剧减小,且α晶粒趋于等轴化。合金在1260℃进行等温热处理时,热处理时间由0.5 h延长至6 h,α晶粒和γ晶粒迅速长大,γ相体积分数降低,继续延长热处理时间,显微组织没有明显的变化。通过计算可知,1260℃下α晶粒尺寸的极限值约为0.54 Dγ/Vγ(Dγ为γ晶粒尺寸;Vγ为γ晶粒体积分数)。
Powder metallurgy Ti-45Al-7Nb-0.3W (mole fraction, %) alloy was canned-forged and then heat-treated. The effects of heat treatment time and temperature on the alloy microstructure evolution were studied. The microstructures of as-forged alloy and heat-treated alloy were investigated by scanning and transmission microscopy. The results demonstrate that a fewβ grains in as-forged alloy are eliminated during heat treatments in the temperature range of 1230?1260℃. Isochronal annealing experiments show that theα grain size andγ grain size rapidly increase with increasing the temperature, while the volume fraction ofγ phase steeply decreases andα grains become equiaxial. Isothermal annealing experiments at 1260℃ for 0.5?6 h reveal a sharp increase ofα grain size andγ grain size with time. Meantime, the volume fraction ofγ phase decreases. The microstructure of alloy shows no significant change during prolonging the annealing time. By calculation, the extremeα grain size at 1260℃ is approximately 0.54Dγ/Vγ (Dγ is short forγ grain size andVγ is short or the volume fraction ofγ phase).
参考文献
[1] | 刘江平,苏彦庆,骆良顺,陈晖,徐严谨,郭景杰,傅恒志.箔冶金法制备γ-TiAl基波纹板[J].中国有色金属学报(英文版),2012(01):72-77. |
[2] | 李慧中,曾敏,梁霄鹏,李洲,刘咏.粉末冶金Ti-47Al-2Cr-0.2Mo合金的流变行为及加工图[J].中国有色金属学报(英文版),2012(04):754-760. |
[3] | 杨劼人,陈瑞润,丁宏升,苏彦庆,黄锋,郭景杰,傅恒志.矩形冷坩埚定向凝固过程中钛铝熔体的流场数值计算[J].中国有色金属学报(英文版),2012(01):157-163. |
[4] | KIM Y W. Gamma titanium aluminides:Their status and future[J]. Journal of Materials Science, 1995, 47(7):39-42.,1995. |
[5] | 陈玉勇,韩建超,肖树龙,徐丽娟,田竟.稀土Y在γ-TiAl基合金及其精密热成形中应用的研究进展[J].中国有色金属学报,2014(05):1241-1250. |
[6] | ABDALLAH Z, WHITTAKER M T, BACHE M R. High temperature creep behaviour in theγ titanium aluminide Ti-45Al-2Mn-2Nb[J]. Intermetallics, 2013, 38(1):55-62.,2013. |
[7] | 卢山,李子然,昝祥.晶界对近片层TiAl高温动态力学行为的数值模拟[J].中国有色金属学报,2012(02):379-387. |
[8] | 陈艳飞,郑顺奇,涂江平,肖树龙,田竟,徐丽娟,陈玉勇.带缺口的熔模铸造TiAl合金断裂特性的扫描电镜原位观察[J].中国有色金属学报(英文版),2012(10):2389-2394. |
[9] | KIM Y W, DIMIDUK D M. Progress in the understanding of gamma titanium aluminides[J]. Journal of Materials, 1991, 43(8):40-47.,1991. |
[10] | HABEL U, MCTIERNAN B. HIP temperature and properties of a gas-atomizedγ-titanium aluminide alloy[J]. Intermetallics, 2004, 12(1):63-68.,2004. |
[11] | ZHANG G, BLENKINSOP P A, WISE M L H. Phase transformations in HIPped Ti-48Al-2Mn-2Nb powder during heat-treatments[J]. Intermetallics, 1996, 4(6):447-455.,1996. |
[12] | GERLING R, BARTELS A, CLEMENS H, KESTLER H, SCHIMANSKY F P. Structural characterization and tensile properties of a high niobium containing gamma TiAl sheet obtained by powder metallurgical processing[J]. Intermetallics, 2004, 12(3):275-280.,2004. |
[13] | 刘咏,黄伯云,周科朝,贺跃辉,韦伟峰. TiAl基合金包套锻造工艺[J].中国有色金属学报, 2000, 10(S1):s6-s9. LIU Yong, HUANG Bai-yun, ZHOU Ke-chao, HE Yue-hui, WEI Wei-feng. Canned forging process of TiAl based alloy[J]. The Chinese Journal of Nonferrous Metals, 2000, 10(S1):s6-s9.,2000. |
[14] | KIM Y W. Strength and ductility in TiAl alloy[J]. Intermetallics, 1998, 6(7/8):623-628.,1998. |
[15] | NOVOSELOVA T, MALINOV S, SHA W. Experimental study of the effects of heat treatment on microstructure and grain size of a gamma TiAl alloy[J]. Intermetallics, 2003, 11(5):491-499.,2003. |
[16] | 唐建成,黄伯云,刘文胜,贺跃辉.锻造TiAl基合金的晶粒长大及其动力学分析[J].金属学报,2000(01):25-29. |
[17] | SEETHARAMAN V, SEMIATIN S L. Analysis of grain growth in a two-phase gamma titanium aluminide alloy[J]. Metallurgical and Materials Transactions A, 1997, 28(4):947-954.,1997. |
[18] | PRASAD U, CHATURVEDI M C. Grain coarsening in Ti-45Al based titanium aluminides at supertransus temperature and subsequent lamellar structure formation[J]. Materials Science and Technology, 2004, 20(1):87-92.,2004. |
[19] | LAMIRAND M, BONNENTIEN J L, FERRIERE G, GUERIN S, CHEVALIER J P. Relative effects of chromium and niobium on microstructure and mechanical properties as a function of oxygen content in TiAl alloys[J]. Scripta Materialia, 2007, 56(5):325-328.,2007. |
[20] | HUANG Z W, CONG T. Microstructure instability and embrittlement behaviour of an Al-lean, high-Nbγ-TiAl-based alloy subjected to a long-term thermal exposure in air[J]. Intermetallics, 2010, 18(1):161-172.,2010. |
[21] | 沈勇,丁晓非,王富岗,谭毅,Jenn-Ming Yang.高铌TiAl基合金高温抗氧化性能研究[J].中国腐蚀与防护学报,2004(04):203-207. |
[22] | WANG Li, LIU Yong, ZHANG Wei, WANG Hui, LI Qi. Optimization of pack parameters for hot deformation of TiAl alloys[J]. Intermetallics, 2011, 19(1):68-74.,2011. |
[23] | SEMIATIN S L, SEETHARAMAN V, DIMIDUK D M, ASHBEE K H G. Phase transformation behavior of gamma titanium aluminide during supertransus heat treatment[J]. Metallurgical and Materials Transactions A, 1998, 29(1):7-18.,1998. |
[24] | 张永刚,韩雅芳,陈国良,郭建亭,万晓景,冯涤.金属间化合物结构材料[M].北京:国防工业出版社, 2001:778. ZHANG Yong-gang, HAN Ya-fang, CHEN Guo-liang, GUO Jian-ting, WAN Xiao-jing, FENG Di. Structural intermetallics [M]. Beijing:National Defense Industrial Press, 2001:778.,2001. |
[25] | HUMPHREYS F J, MATHERLY M. Recrystallization and related annealing phenomena[M]. Netherlands:ELSEVIER, 2004:359.,2004. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%