贵金属, 2013, 34(1): 74-78.
磁控溅射用CoCrPt系靶材制备技术研究进展
陈松 1, , 耿永红 2, , 王传军 {"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"为了实现可持续发展和增强市场竞争力,钢铁工业在下一步技术转型中,应高度重视钢铁制造流程的能量流和能量流网络问题.在对比分析热力学孤立系统、封闭系统、开放系统和耗散结构基本特征的基础上,从充分发挥钢厂3个功能的视角,阐述了钢铁制造流程中铁素物质流和能量流的行为规律,提出了应注重与铁素物质流相关的能量流的输入/输出特点和能量流网络构建以及相应的信息化集成调控的观点,剖析了钢铁工业节能减排的潜力,指出了提高钢厂综合竞争力和多方位服务于可持续发展社会的可能性,探讨了相关理论的建立、技术开发和工程化实施的策略等.","authors":[{"authorName":"殷瑞钰","id":"d7a9b596-b1d6-4336-8b5c-a8f723195ded","originalAuthorName":"殷瑞钰"}],"doi":"","fpage":"1","id":"22cbb9e4-bb3c-4636-af25-470418c060af","issue":"8","journal":{"abbrevTitle":"ZGYJ","coverImgSrc":"journal/img/cover/ZGYJ.jpg","id":"87","issnPpub":"1006-9356","publisherId":"ZGYJ","title":"中国冶金"},"keywords":[{"id":"9f4898dc-2f2b-48c0-ae7b-235427ab3be6","keyword":"热力学系统","originalKeyword":"热力学系统"},{"id":"843c3cd0-8b3e-40bd-9195-aaf0452b1bb4","keyword":"钢铁制造流程","originalKeyword":"钢铁制造流程"},{"id":"8688338e-569f-4e48-b293-f5ef51eb7e17","keyword":"能量流行为","originalKeyword":"能量流行为"},{"id":"115a67fc-688d-4398-9286-51b4e41a2e41","keyword":"能量流网络化集成","originalKeyword":"能量流网络化集成"}],"language":"zh","publisherId":"zgyj201008001","title":"从开放系统、耗散结构到钢厂的能量流网络化集成","volume":"20","year":"2010"},{"abstractinfo":"对钢厂制造流程动态运行过程的物理本质进行了概要的描述,并在此基础上进一步指出:在钢厂制造流程中,铁素物质流与碳素能量流的关系是相伴而行的,而碳素能量流与铁素物质流的关系则是时合时分的.在钢厂制造流程中,不仅存在着铁素物质流网络及相关的运行程序,而且也存在着与铁索物质流转换有关的能量流网络及其运行程序.强调在研究钢厂的能源转换功能的方法时指出,不能停留在物料平衡、热平衡的方法上,而应该以动态的输入-输出概念和能量流网络的概念来进一步推动钢厂节能减排工作.还讨论了钢厂能量流运行的动力学机制以及能源管控中心的设计原则.进而从铁素物质流系统和碳素能最流系统提出了一系列钢厂节能减排的着手环节.特别对钢厂\"只买煤、不买电、不用燃料油\"的内涵与煤气等含能介质\"近零\"排放作了解释.提出中国钢厂的节能减排应该进入以建立能量流网络--能源管控中心为主要标志的新阶段.","authors":[{"authorName":"殷瑞钰","id":"6eac4502-9ebb-4d96-94d2-1820ea6f371f","originalAuthorName":"殷瑞钰"}],"doi":"","fpage":"1","id":"e38e5cb0-4938-4578-9d57-37436b6b2781","issue":"4","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"ec08f1df-aa99-4433-b7ba-ad452dcf2cb6","keyword":"钢铁制造流程","originalKeyword":"钢铁制造流程"},{"id":"25015bf9-89b4-4d12-a8f4-094b8c15ec67","keyword":"能量流网络","originalKeyword":"能量流网络"},{"id":"ae764d79-9102-424c-b3fb-9563e9561d36","keyword":"物理本质","originalKeyword":"物理本质"}],"language":"zh","publisherId":"gt201004001","title":"论钢厂制造过程中能量流行为和能量流网络的构建","volume":"45","year":"2010"},{"abstractinfo":"本文对钢厂制造流程动态运行过程的物理本质进行了概要的描述,并在此基础上进一步指出:在钢厂制造流程中,铁素物质流与碳素能量流的关系是相伴而行的,而碳素能量流与铁素物质流的关系则是时合时分的。在钢厂制造流程中,不仅存在着铁素物质流网络及相关的运行程序,而且也存在着与铁素物质流转换有关的能量流网络及其运行程序。本文强调在研究钢厂的能源转换功能的方法时指出,不能停留在物料平衡、热平衡的方法上,而应该以动态的输入-输出概念和能量流网络的概念来进一步推动钢厂节能减排工作。本文还讨论了钢厂能量流运行的动力学机制以及能源管控中心的设计原则。进而从铁素物质流系统和碳素能量流系统提出了一系列钢厂节能减排的着手环节。特别对钢厂“只买煤、不买电、不用燃料油”的内涵与煤气等含能介质“近零”排放作了解释。提出中国钢厂的节能减排应该进入以建立能量流网络——能源管控中心为主要标志的新阶段。","authors":[{"authorName":"殷瑞钰","id":"9556e1e8-9039-4be1-a36a-fdec6e552393","originalAuthorName":"殷瑞钰"}],"categoryName":"|","doi":"","fpage":"1","id":"10d632c5-cb9f-4894-8f8b-e2b6a78d0f33","issue":"4","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"4f8f9279-2673-46d1-b282-7eea61813ba9","keyword":"钢铁制造流程;能量流网络;物理本质","originalKeyword":"钢铁制造流程;能量流网络;物理本质"}],"language":"zh","publisherId":"0449-749X_2010_4_2","title":"论钢厂制造过程中能量流行为和能量流网络的构建","volume":"45","year":"2010"},{"abstractinfo":"炭黑加入到橡胶后会导致橡胶动态粘弹性发生很大变化,填料网络化是决定填充橡胶动态滞后的主要原因,文中采用含有吡啶官能团的分子对炭黑N330进行表面修饰,以控制炭黑填充橡胶的动态粘弹行为.结果发现,炭黑表面经过修饰后,增大了炭黑聚集体在橡胶中的平均距离,并使炭黑的网络化程度得到控制.通过对两种炭黑填充橡胶相对模量的研究,发现在动态应变的作用下,改性炭黑(GCB)之间的填料网络更容易受到破坏.说明炭黑经过表面修饰后,其表面能降低,炭黑粒子之间的相互作用减弱.","authors":[{"authorName":"张艳丹","id":"cfcf1c02-2e2e-4c26-9c53-4e84b38a682c","originalAuthorName":"张艳丹"},{"authorName":"张俊丽","id":"38ebe261-4ca8-4d24-95e1-e4f3a55f2282","originalAuthorName":"张俊丽"},{"authorName":"韩晶杰","id":"9184e058-4f61-45ba-b53f-7324a5cc651b","originalAuthorName":"韩晶杰"},{"authorName":"吴驰飞","id":"5a99fd14-3023-4151-a957-65926550bccf","originalAuthorName":"吴驰飞"}],"doi":"","fpage":"98","id":"d24fb65f-bc0d-41ea-84b3-02361c2e3f00","issue":"7","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"976a6d61-a78d-44c3-a91c-3c4e5166d479","keyword":"炭黑","originalKeyword":"炭黑"},{"id":"9eb50919-436a-49e2-b1ff-2385152a71f0","keyword":"填料网络化","originalKeyword":"填料网络化"},{"id":"4b35c0c1-1c4d-4390-bb04-9a448f60ef88","keyword":"表面修饰","originalKeyword":"表面修饰"},{"id":"adc3103c-9caf-4e20-88b2-d5af56c389d4","keyword":"表面能","originalKeyword":"表面能"}],"language":"zh","publisherId":"gfzclkxygc201307024","title":"炭黑表面修饰对填料网络化的影响","volume":"29","year":"2013"},{"abstractinfo":"在实验室研究中空纤维镍基板的制备工艺的基础上,\n采用自制的网络化的ANN-GA系统对58个样本进行了\n工艺参数优化和寻优, 得到的最佳工艺参数如下:\n中空镍纤维含量为97%; 烧结温度为1275 K; 保温\n时间为20 min; 造孔剂 PVB, PP和Ni(OH)2的含量\n分别为5%, 3.5%和1%. 在最优工艺条件基础上, 获得\n了性能优异、孔率接近87%的基板材料. 并用计算机分析和预报了各单因素的影响规律, 预测结果与\n文献报道的实验结果一致.","authors":[{"authorName":"李钒","id":"05792023-e823-4f3b-a70e-d66af0990d7d","originalAuthorName":"李钒"},{"authorName":"王习东","id":"da4a44b8-9076-4258-a1a9-813649c63b45","originalAuthorName":"王习东"},{"authorName":"张登君","id":"2a2c3c46-9a14-4e13-9525-3fcfe3e9e996","originalAuthorName":"张登君"},{"authorName":"张梅","id":"e3b239da-02fb-4ee4-93be-fd2b08ad2a32","originalAuthorName":"张梅"},{"authorName":"盖鑫磊","id":"b474d54c-c5b0-49f7-9b40-468ffae934a5","originalAuthorName":"盖鑫磊"}],"categoryName":"|","doi":"","fpage":"1293","id":"1d5aa596-5d8c-4e30-a47d-ba98f6f9101c","issue":"12","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"93c6dfc4-0f12-4537-8899-cf7cb9abad73","keyword":"中空纤维镍基板","originalKeyword":"中空纤维镍基板"},{"id":"9519064a-22c6-4358-8e92-60ae4e5e0442","keyword":"ANN-GA program on computer network","originalKeyword":"ANN-GA program on computer network"}],"language":"zh","publisherId":"0412-1961_2005_12_5","title":"网络化的ANN-GA系统优化中空纤维镍基板制备工艺参数","volume":"41","year":"2005"},{"abstractinfo":"以天然鳞片状石墨和Mn粉为原料,以酚醛树脂为结合剂制成Mn-C试样.对试样进行DTA-TG分析后,分别在930℃、1100℃、1220℃、1250℃、1340℃、1400℃烧成,然后采用XRD和SEM等手段分析烧后试样的物相组成和显微结构.XRD分析表明,Mn-C试样在烧成过程中会形成一系列锰碳化合物,且这些化合物是不稳定的,随温度的升高逐渐发生分解.SEM分析表明,当试样中Mn和C的质量比为1:4,烧结温度为1400℃时,Mn对碳网络化结构的形成影响显著.","authors":[{"authorName":"候谨","id":"e5afd306-04e6-4257-af06-311de6626400","originalAuthorName":"候谨"},{"authorName":"杜艳华","id":"40b1a720-d6aa-4c54-89e1-44e2b78416ce","originalAuthorName":"杜艳华"},{"authorName":"赵文广","id":"86237570-7865-4f43-b0df-4aff6cfe20d1","originalAuthorName":"赵文广"},{"authorName":"宋希文","id":"c1ac8079-30ee-4bc6-af62-967dd1f9daee","originalAuthorName":"宋希文"},{"authorName":"吴熙顺","id":"b982e54c-a941-452f-9a7a-d3ef81a25603","originalAuthorName":"吴熙顺"},{"authorName":"孙加林","id":"5bfc5ddd-cccd-4575-9f0b-f6f6a5e4ca2f","originalAuthorName":"孙加林"}],"doi":"10.3969/j.issn.1001-1935.2003.06.008","fpage":"336","id":"2fb93e0f-0b4a-467e-804b-caa8d5238d5f","issue":"6","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"6e68a628-fd25-4354-a1ef-3c01bf0916d2","keyword":"炭材料","originalKeyword":"炭材料"},{"id":"ecc4fa4c-cc92-498d-b507-f3c6fe5def29","keyword":"碳结合","originalKeyword":"碳结合"},{"id":"9267393c-6eee-41b2-8640-2ef8aff1680a","keyword":"网络结构","originalKeyword":"网络结构"},{"id":"dd88c247-ed42-4414-a4d1-8cac25576c08","keyword":"锰","originalKeyword":"锰"},{"id":"e065db74-5ed8-4cfb-903f-238dbd77d6d3","keyword":"石墨","originalKeyword":"石墨"}],"language":"zh","publisherId":"nhcl200306008","title":"Mn对炭材料中碳网络化结构形成的影响","volume":"37","year":"2003"},{"abstractinfo":"在实验室研究中空纤维镍基板的制备工艺的基础上,采用自制的网络化的ANN-GA系统对58个样本进行了工艺参数优化和寻优,得到的最佳工艺参数如下:中空镍纤维含量为97%;烧结温度为1275 K;保温时间为20 min;造孔剂PVB,PP和Ni(OH)2的含量分别为5%,3.5%和1%.在最优工艺条件基础上,获得了性能优异、孔率接近87%的基板材料.并用计算机分析和预报了各单因素的影响规律,预测结果与文献报道的实验结果一致.","authors":[{"authorName":"李钒","id":"8fb6493a-52c0-4f51-ad78-b210f4f3e0c1","originalAuthorName":"李钒"},{"authorName":"王习东","id":"a75e254c-4a49-444f-9882-b381f7aa2e37","originalAuthorName":"王习东"},{"authorName":"张登君","id":"114881ca-b8f0-4428-9936-6a4b85da35ee","originalAuthorName":"张登君"},{"authorName":"张梅","id":"9070c5c1-773a-49d0-976b-38d8f7358bd1","originalAuthorName":"张梅"},{"authorName":"盖鑫磊","id":"f14bbeaf-9eac-4cf7-911f-4d3bc9802311","originalAuthorName":"盖鑫磊"}],"doi":"10.3321/j.issn:0412-1961.2005.12.012","fpage":"1293","id":"6e3737c2-bfba-4563-a659-e65a01bc6b34","issue":"12","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"d656c6ac-4ced-4418-8345-33cc3fcdbd5e","keyword":"中空纤维镍基板","originalKeyword":"中空纤维镍基板"},{"id":"1332609b-f173-47ca-9b22-3a61f7b26926","keyword":"网络化ANN-GA系统","originalKeyword":"网络化ANN-GA系统"},{"id":"47dd72f9-72e7-439f-a959-05eb67320d62","keyword":"参数优化","originalKeyword":"参数优化"},{"id":"a88159df-71b1-48a5-9c9b-f294593fbcd9","keyword":"影响因素","originalKeyword":"影响因素"}],"language":"zh","publisherId":"jsxb200512012","title":"网络化的ANN-GA系统优化中空纤维镍基板制备工艺参数","volume":"41","year":"2005"},{"abstractinfo":"钢铁工业是典型的流程制造业,制造流程是其物理特征.通过对钢铁制造流程内在特征的研究,阐述了对钢厂智能化的认识,探讨了推进钢厂智能化的思路及其内涵,包括智能化设计、智能化物流、智能化物质流/能量流/信息流的组织与调控、智能化经营和服务等.指出流程型智能化制造的物理系统要以动态-有序、协同-连续运行为其网络结构及程序优化的导向,并以此物理系统(流程系统)为本体与智能化信息网络系统融合,实现全厂性动态运行、管理、服务等过程的自感知、自决策、自执行和自适应.智能化钢厂的建设,需要深刻理解制造流程动态运行过程的物理本质,构建起植根于流程运行要素及其优化的运行网络、运行程序的物理模型,进而构建全流程网络化、层次化信息流模型.钢厂智能化不只是数字信息系统,必须高度重视物理系统的研究,必须是有物理输入/输出的物质流网络、能量流网络和信息流网络\"三网协同\"的信息物理系统.钢厂智能化既要重视数字化信息网络系统的研发,更要重视制造流程(物理系统)中物质流网络、能量流网络的结构优化和运行程序优化,通过以制造流程物理系统结构优化和数字化信息系统相互融合来实现钢厂智能化.","authors":[{"authorName":"殷瑞钰","id":"e94cfadd-cbfe-4b9e-a9b6-a6e76bebc54c","originalAuthorName":"殷瑞钰"}],"doi":"10.13228/j.boyuan.issn0449-749x.20170107","fpage":"1","id":"87adba2e-89eb-4c7d-913a-fa00c2860437","issue":"6","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"2555ab7f-af4b-4a13-b8cc-98c34d85d218","keyword":"钢铁制造流程","originalKeyword":"钢铁制造流程"},{"id":"fcc86c76-ef43-446d-9d88-38dc732b765f","keyword":"物理结构","originalKeyword":"物理结构"},{"id":"47430c6f-118c-4f83-91c5-1e9865f86243","keyword":"物质流","originalKeyword":"物质流"},{"id":"d0c70eff-a7c8-4858-8519-8b6b6902811a","keyword":"能量流","originalKeyword":"能量流"},{"id":"8a03805d-ab1f-4ea8-ac35-2cfb045a03d3","keyword":"信息流","originalKeyword":"信息流"},{"id":"0248e81b-e413-434c-8d2f-d879fb974b0e","keyword":"信息物理融合系统","originalKeyword":"信息物理融合系统"},{"id":"3e32fe67-fa99-455d-88b1-4fe75f3df9ab","keyword":"智能化","originalKeyword":"智能化"}],"language":"zh","publisherId":"gt201706001","title":"关于智能化钢厂的讨论——从物理系统一侧出发讨论钢厂智能化","volume":"52","year":"2017"},{"abstractinfo":"采用水热法设计并合成了一个新颖的超分子网络化合物[Mn(phen)_2I_2],并对其进行了元素分析,红外光谱分析和X-射线单晶衍射分析.结果表明:该化合物属三斜晶系, P_1~-空间群,晶胞参数为:a=0.92705(19) nm,b=1.0370(2) nm,c=1.2775(3) nm,α=77.32(3) °,β=81.26 (3) °,γ=70.30(3) °,V=1.1240(4) nm~3,Z= 2.该化合物通过四种C-H...I氢键相互作用与两种π-π堆积相互作用把各个独立的结构单元连接成了超分子网络化合物.","authors":[{"authorName":"马天慧","id":"b35f59b8-4759-4b72-9a29-e1bd3578ffb7","originalAuthorName":"马天慧"},{"authorName":"贾林艳","id":"cb87bc71-184b-466a-867b-e27fe11a3309","originalAuthorName":"贾林艳"},{"authorName":"任玉兰","id":"582f5438-f891-4c5d-9ca9-c5799336c02d","originalAuthorName":"任玉兰"},{"authorName":"尹永一","id":"a08765a7-26d7-465d-bcbb-dead273f663d","originalAuthorName":"尹永一"},{"authorName":"董维广","id":"fbe85756-e10f-43bb-a892-8fc9dca08d93","originalAuthorName":"董维广"},{"authorName":"吕孝江","id":"9205eff8-ac93-4f7c-9aba-d76e638d46ab","originalAuthorName":"吕孝江"}],"doi":"","fpage":"1272","id":"336efe40-4acb-4295-ac31-d235db76519c","issue":"5","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"7b4ae952-a929-4d15-8884-e58e4c4d42b9","keyword":"水热合成","originalKeyword":"水热合成"},{"id":"949cf574-c2bc-46a5-9401-d2dae89f5816","keyword":"配位键","originalKeyword":"配位键"},{"id":"1bde7b81-43dc-43b7-833d-882c7d9d68a4","keyword":"氢键","originalKeyword":"氢键"},{"id":"c88e82ca-4916-42ec-a633-0807512ce366","keyword":"π-π堆积作用","originalKeyword":"π-π堆积作用"}],"language":"zh","publisherId":"rgjtxb98200905046","title":"水热合成超分子网络化合物[Mn(phen)_2I_2] (phen=邻菲咯啉)及晶体结构","volume":"38","year":"2009"},{"abstractinfo":"本文通过数值求解三维的N-S方程以及能量守恒方程,研究了树型微通道网络热沉的温度分布特点,指出了常规树型网络结构在集成微电子冷却应用中的局限性,并通过详细的分析对其进行了局部改进.改进后的树型网络极大地提高了热沉的热性能同时还降低了压降.和平行微通道相比,改进后的树型微通道网络具有更小的压降,具有更小的热阻和更好的温度均匀性.因此具有很大的应用前景.","authors":[{"authorName":"葛浩","id":"4d7fc5bc-d76c-413c-90d8-63265980692e","originalAuthorName":"葛浩"},{"authorName":"洪芳军","id":"132f5a95-4b11-476e-a2f1-cf8940ddbfa1","originalAuthorName":"洪芳军"},{"authorName":"郑平","id":"2a311cbc-4715-4b1d-8367-ce270e18cc81","originalAuthorName":"郑平"}],"doi":"","fpage":"41","id":"23cd24ab-d3d2-4881-a273-7dc6073be6a3","issue":"z2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"15b448a5-6052-4379-ae84-c565c544cf55","keyword":"微电子冷却","originalKeyword":"微电子冷却"},{"id":"0aeb7e50-6bf4-4f71-8be1-d6443f9a760f","keyword":"树型微通道网络","originalKeyword":"树型微通道网络"},{"id":"5c03d2e9-87d8-40cd-ba5e-a8df2bb66910","keyword":"平行微通道","originalKeyword":"平行微通道"},{"id":"ef251dee-2ce4-404a-8ea2-80ff198006b0","keyword":"热阻","originalKeyword":"热阻"},{"id":"23dd03bf-81d7-4013-9527-e1212375ad88","keyword":"温度均匀性","originalKeyword":"温度均匀性"}],"language":"zh","publisherId":"gcrwlxb2007z2011","title":"树型微通道网络在集成微电子冷却中的应用","volume":"28","year":"2007"}],"totalpage":3303,"totalrecord":33027}