欢迎登录材料期刊网

材料期刊网

高级检索

Molecular dynamics simulation is applied to investigate the microstructure evolution of magnesium single crystals under c-axis extension at different temperatures. At low temperatures, both {1012}and {1011} twins are observed. At elevated temperatures, {1011} twining decreases quickly with increasing temperature, while the amount of {1012} twins increases. The {1012} twin is found to be the main deformation mechanism under the c-axis tension in the magnesium single crystal. Meanwhile, shear bands are also observed during deformation. When the temperature is beyond 500 K, the non-basal plane slip due to the thermal activation is found. The stress-strain curves related with deformation behavior at atomistic scale are presented.

参考文献

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]
[51]
[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59] C.S. Roberts, 
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%