运用Thermo-Calc软件进行热力学计算,预测了一种新型9-12%Cr低活性F/M(铁素体/马氏体)实验钢的组织.对淬火回火热处理后的显微组织进行了观察,并对析出物进行电子衍射结构分析和EDS化学成分检测.结果表明,实验钢是典型的回火板条马氏体组织,位于各种晶界上的析出物均为富Cr的碳化物M23C6,其化学成分随碳化物的形貌变化而变化.对实验钢进行60%冷变形并随后在820℃退火10-300min,M23C6在完全再结晶、奥氏体相变过程中进一步球化,Cr、W不断富集,Cr/Fe逐渐升高至2后成分趋于稳定,化学组成接近于(Cr15Fe6W2)C6.
参考文献
[1] | S.Baindur.Materials challenges for the supercritical water-cooled reactor(SCWR),Bulletin of the Canadian Nuclear Society,29(1),32(2008) |
[2] | C.Sun,R.Hui,W.Qu,S.Yick,Progress in corrosion resistant materials for supercritical water reactors,Corrosion Science,51,2508(2009) |
[3] | P.Yvon,F.Carre,Structural materials challenges for advanced reactor systems,Journal of Nuclear Materials,385,217(2009) |
[4] | K.L.Murty,I.Charit.Structural matedals for Gen-IV nuclear reactors:Challenges and opportunities,Journal of Nuclear Materials,383,189(2008) |
[5] | R.L.Klueh,D.R.Harries,High-chromium Ferritic and Martensitic Steels,for Nuclear Applications(USA,ASTM,2001)P.28 |
[6] | R.L.Klueh,Elevated-temperature Ferritic and Martensitic Steels and their Application to Future Nuclear Reactors(Tennessee,ORNL,2004)P.13 |
[7] | F.Abe.Precipitate design for creep strengthening of 9%Cr tempered martensitic steel for ultra-supercritical power plants,Science and Technology of Advanced Materials,9,1(2008) |
[8] | v.Kne(z)evi(c),G.Sauthoff,J.Vilk,G.Inden,A.Schneider,R.Agamennone,W.Blum,Y.Wang.A.Scholz,C.Berger,J.Ehlers,L.Singheiser,Martensitie/Ferritic super heat-resistant 650 steels-design and testing of model alloys,ISIJ International,42(12),1505(2002) |
[9] | V.Kne(z)evi(c),J.Balun,G.Sauthoff,G.Inden,A.Schneider,Design of martensitic/ferritic heat-resistant steels for application at 650 with supporting thermodynamic modelling,Materials Science and Engineering A,477,224(2008) |
[10] | J.M.Vitek,R.L.Klueh,Precipitation reactions during the heat treatment of ferritic steels,Metallurgical Transactions A,14(6),1047(1983) |
[11] | KANG Renmu,LIU Guoquan,HU Benfu,HU Jiaxue,WU Kai,XU Kun,Optimization design of reduced-activation ferritic/martensitic steels for SCWR fuel cladding materials,Atomic Energy Science and Technology,43(6),523(2009)(康人木,刘国权,胡本芙,胡加学,吴凯,徐锟,超临界水冷堆燃料包壳管用低活性F/M钢的优化设计,原子能科学技术,43(6),523(2009)) |
[12] | M.Hayakawa,K.Yamagnchi,M.Kimura,K.Kobayashi,Visualization of subgrain structures for a ferritic 12Cr-2W steel using backscattered scanning electron microscopy,Materials Letters,58,2565(2004) |
[13] | F.Abe,Analysis of creep rates of tempered martensitic 9%Cr steel based on microstructure evolution,Materials Science and Engineering A,510-511,64(2009) |
[14] | M.Kimura,K.Yamaguchi,M.Hayakawa,K.Kobayashi,K.Kanazawa.Microstructures of creep-fatigued 9-12%Cr ferritic heat-resisting steels,International Journal of Fatigue,28,300(2006) |
[15] | S.Morito,H.Tanaka,R.Konishi,T.Furuhara,T.Makl,The morphology and crystallography of lath martensite in Fe-C alloys,Acta Materialia,51,1789(2003) |
[16] | S.Morito,X.Huang,T.Furuhara,T.Maki,N.Hansen,The morphology and crystallography of lath martensite in alloy steels,Acta Materialia,54,5323(2006) |
[17] | P.J.Ennis,A.Zielinska-Lipiec,O.Wachter,A.Czyrska-Filemonowicz,Mierostructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant,Acta Metallurgica,45(12),4901(1997) |
[18] | R.C.Thomson,H.K.D.H.Bhadeshia,Carbide precipitation in 12Cr1MoV power plant steel.Metallurgical Transacotions A,23(3),1171(1992) |
[19] | M.Tamura,H.Hayakawa,A.Ybshitake,A.Hishinuma,T.Konda,Phase stability of reduced activation ferritic steel:8%Cr-2%W-0,2%V-0,04%Ta-Fe,Journal of Nuclear Materials,155-157,620(1988) |
[20] | Y.Kadoya,B.F.Dyson,M.Mclean,Microstructural stability during creep of Mo or W bearing 12Cr steels,Metallurgical and Materials Transactions A,33(8),2459(2002) |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%