Ni2MnGa晶体同时具有强铁磁性、大磁致伸缩、温控和磁控形状记忆效应,其磁控形状记忆效应的响应频率接近压电陶瓷,输出应变和应力接近温控形状记忆合金,是近年来发现的一类新型功能晶体.Ni2MpGa晶体77K时在[001]方向,仅2MPa的预应力即可产生5%的温控可回复应变,已接近 TiNi合金 6%~8%的可回复应变量;非化学剂量的 Ni。MnGa晶体室温条件下在[001]方向, 6 hOe外磁场已诱发产生 0.31%的输出应变,远超过巨磁致伸缩材料Terfenol-D输出应变0.17%的水平.由于该晶体在磁场控制下表现出的大输出应变和应力,以及响应频率快和可精确控制的综合特性,使其可能在声纳、微位移器、线性马达、微波器件、振动和噪声控制、机器人和智能结构等诸多领域有重要应用,成为未来新一代驱动器和传感器材料.本文综述了Ni2MnGa单晶的基本性能、磁控形状记忆效应的机理、本质以及影响性能的因素等。
Ni2MnGa crystal is a new kind of functional material, which exhibits ferromagnetic, magnetostrictive, thermal and magnetically
controlled shape memory properties. The nonstoichiometric Ni2MnGa crystal can show a strain of 0.31% along [001] direction in a magnetic field of 6kOe
at room temperature; a [001]-directed stress of only 2MPa gives rise to a recoverable strain of 5%. As a kind of future actuator and sensor material, it will
possibly be used in many fields, such as sonar, microactuator, linear motor, microwave device, vibration and noise control, robot and functional structure etc. This paper
presents the properties of Ni2MnGa crystal, the essential and mechanism of the magnetic-induced martensitic transformation and magnetically controlled shape memory
effect. Some factors which may influence the properties of Ni2MnGa are also discussed.
参考文献
[1] | Ullakko K. J. Mater. Eng. Perform., 1996, 5 (3)崐: 405--409. [2] Vasil’ev A N, Keiper A R, Kokerin V V, et al. Int. J. Appl. Electromag. Mater., 1994?, 5: 163--169. [3] O’Handley R C. J. Appl. Phys., 1998, 83: 3263--3270. [4] Ullakko K, Huang J K, Kantner C, et al. Appl. Phys. Lett., 1996?, 69: 1966--1998. [5] Ullakko K, Huang J K, Kokorin V V, et al. Scripta Materialia, 1997?, 36: 1133--1138. [6] Wu G H,Yu C H, Meng L Q, et al. Appl. Phys. Let., 1999, 75 (19): 6951--6953. [7] Webster P J, Ziebeck K R A, Town S L, et al. Mag. B., 1984, 49: 295--310. [8] 徐祖耀. 金属热处理学报,1996, 17: 27--31. [9] 徐祖耀. 马氏体相变与马氏体. 中国科学技术出版社, 1984, 7--59. [10] Murray S J, Farinelli M, Kantner C, et al. J. Appl. Phys., 1998, 83 (11): 7297--7299. [11] Chernenko V A, Cesari E, Kokorin V V, et al. Scripta Metllurgica et Materialia, 1995, 33: 1239--1244. [12] Ooiwa K, Endo K, Shinogi A. J. Magn. Magn. Mater., 1992, 104--107: 2011--2012. [13] 松本实. 日本应用磁气学会志, 1998, 22 (3): 115--119. [14] 松本实, 谷顺二,高木敏行. 工业材料,1997, 45 (12): 108--111. [15] Zheludev A, Shapiro S M, Wochner P, et al. Phys. Rev. B., 1995, 51: 11310--11316. [16] Chernenko V A, Kokorin V V, Cesari E. Phys. Rev. B., 1997, 55 (17): 11068--11071. [17] Stuhr U, Vorderwisch P, Kokorin V V, et al. Phys. Rev. B., 1997, 56: 14360--14365. [18] Chernenko V A, Segui, Cesari E, et al. Phys. Rev. B., 1998, 57: 2659--2662. [19] Zuo F, Su X, Wu K H. Phys. Rev. B., 1998, 58: 11127--11130. [20] Gonzalez-Comas A, Obrado E, Manosa L, et al. Phys. Rev. B., 1999, 60 (10): 7085--7090. [21] Wedel B, Suzuki M, Murakami Y, et al. Journal of Alloys and Compounds, 1999, 290: 137--143. [22] Fritsch G, Kokorin V V, Chernenko V A, et al. Phase Transitions, 1996, 57: 233--240. [23] Worgull J, Petti E, Trivisonno J. Phys. Rev. B., 1996, 54: 15695--15699. [24] Overholser R W, Manfred Wuttig, Neumann D A. Scripta Materialia, 1999, 40: 1095--1102. [25] Chernenko V A. Scripta Materialia, 1999, 40: 523--527. [26] Tickle R, James R D. J. Magn. Magn. Mater., 1999, 195: 627--638. [27] Mentz E, Bauer A, Gunther T, et al. Phys. Rev. B., 1999, 60: 7379--7384. [28] Vasil’ev A, Bozhko A, Khovailo V, et al. J. Magn. Magn. Mater., 1999, 196--197: 837--839. [29] Vasil’ev A N, Bozhko A D, Khovailo V V, et al. J. Phys. Rev. B., 1999, 59: 1113--1120. [30] Gonzalez-Comas A, Obrado E, Manosa Ll, et al. J. Magn. Magn. Mater., 1999, 196--197: 637--638. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%