欢迎登录材料期刊网

材料期刊网

高级检索

MoSi2是极具应用前景的新型高温结构材料.综述了利用放电等离子烧结、微波烧结、先驱体转化法、自蔓延高温合成和反应熔渗法制备MoSi2及其复合材料的最新研究进展,并提出合金化和纳米颗粒复合化是今后MoSi2基复合材料的研究发展方向.

参考文献

[1] Petrovic JJ;Vasudevan AK .Key developments in high temperature silicides[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1999(1/2):1-5.
[2] Petrovic J J .Toughening strategies for MoSi2-based high temperature structural silicides[J].Intermetallics,2000,8(9-11):1175.
[3] 高濂;宫本大树 .放电等离子烧结技术[J].无机材料学报,1997,12(02):129.
[4] Shimizu H et al.Fabrication and mechanical properties of monolithic MoSi2 by spark plasma sintering[J].Materials Research Bulletin,2002,37(09):1557.
[5] Kuchino J;Kurokawa K;Shibayama T;Takahashi H .Effect of microstructure on oxidation resistance of MoSi2 fabricated by spark plasma sintering[J].Vacuum: Technology Applications & Ion Physics: The International Journal & Abstracting Service for Vacuum Science & Technology,2004(3/4):623-628.
[6] Ji-Soon Kim;Young-Do Kim;Choong-Hyo Lee;Pyuck-Pa Choi;Young-Soon Kwon .SPARK-PLASMA SINTERING OF MOLYBDENUM DISILICIDE[J].Key engineering materials,2005(287):160-165.
[7] Gang Wang;Wan Jiang;Guangzhao Bai .Effect of Addition of Oxides on Low-Temperature Oxidation of Molybdenum Disilicide[J].Journal of the American Ceramic Society,2003(4):731-734.
[8] Ellen M.Carrillo-Heian;R.Douglas Carpenter;Glaucio H.Paulino .Dense Layered Molybdenum Disilicide-Silicon Carbide Functionally Graded Composites Formed by Field-Activated Synthesis[J].Journal of the American Ceramic Society,2001(5):962-968.
[9] 朱文玄;吴一平;徐正达 等.微波烧结技术及其进展[J].材料科学与工程,1998,16(02):61.
[10] Panneerselvam M;Agrawal A;Rao K J .Microwave sintering of MoSi2-SiC composites[J].Materials Science and Engineering A,2003,356(1-2):267.
[11] 陈朝辉;张长瑞;周新贵.先驱体结构陶瓷[M].长沙:国防科技大学出版社,2003
[12] Hao Wang;Xiao-dong Li;Dong-pyo Kim .Macroporous SiC-MoSi_2 ceramics from templated hybrid MoCl_5-polymethylsilane[J].Applied Organometallic Chemistry,2005(6):742-749.
[13] Lee JI.;Mah TI.;Hecht NL. .In situ processing and properties of SiC/MoSi2 nanocomposites[J].Journal of the American Ceramic Society,1998(2):421-424.
[14] 殷声.燃烧合成[M].北京:冶金工业出版社,1999:50.
[15] 寇开昌,杨延清,艾云龙,陈彦,康沫狂.MoSi2-WSi2复合体系的自蔓延燃烧合成[J].稀有金属材料与工程,2000(03):190-192.
[16] 彭可,易茂中,冉丽萍.自蔓延热爆合成MoSi2-WSi2复合粉末[J].中国有色金属学报,2005(06):870-875.
[17] Gao J Y;Jiang W;Wang G .Effect of La2O3 on the properties of combustion-synthesized molybdenum disilicide[J].Materials Science Forum,2005,475-479:1623.
[18] Jianguang X et al.Synthesis of pure molybdenum disilicide by the "chemical oven" self-propagating combustion method[J].Ceramics International,2003,29(05):543.
[19] In-Hyuck Song;Do-Wan Kim;Jung-Yeul Yun;Hai-Doo Kim .Synthesis of Porous MoSi_2 Material Fabricated by SHS (Self-Propagating High Temperature Synthesis) Process[J].Key engineering materials,2005(287):226-230.
[20] Oh D Y et al.One step synthesis of dense MoSi2-SiC composite by high-frequency induction heated combustion and its mechanical properties[J].Journal of Alloys and Compounds,2005,395(1-2):174.
[21] P KANG;Z YIN .Formation mechanism and nanocrystalline phase transformation of molybdenum disilicide by mechanical alloying[J].Nanotechnology,2004(7):851-855.
[22] 马勤,王翠霞,薛群基.钼硅混合粉末在机械合金化过程中的结构演变[J].稀有金属材料与工程,2003(03):170-172.
[23] Heron AJ.;Schaffer GB. .Mechanical alloying of MoSi2 with ternary alloying elements. Part 1: Experimental[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):105-111.
[24] Meier S;Heinrich J G .Processing-microstructure-properties relationships of MoSi2-SiC composites[J].Journal of the European Ceramic Society,2002,22(13):2357.
[25] Chakrabarti O.;Das P.K. .Reactive Infiltration of Si-Mo Alloyed Melt into Carbonaceous Preforms of Silicon Carbide[J].Journal of the American Ceramic Society,2000(6):1548-1550.
[26] 张小立,吕振林,金志浩.熔渗反应法制备MoSi2-SiC复合材料性能的影响因素[J].稀有金属材料与工程,2005(04):639-642.
[27] 张小立,吕振林,金志浩.反应熔渗烧结法制备MoSi2/SiC复合材料[J].硅酸盐学报,2004(02):162-165,188.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%