欢迎登录材料期刊网

材料期刊网

高级检索

通过Ti-V-Nb-Mo复合微合金化设计、控轧控冷(TMCP)及合理选择卷取温度,开发出抗拉强度为890 MPa级铁素体高强钢.结果表明,经两阶段控轧后冷却到600℃进行模拟卷取,钢板的屈服强度达到877 MPa,抗拉强度达到950 MPa,伸长率为20.0%,显微组织为均匀细小的多边形铁素体+少量晶界渗碳体.强化机理分析表明,析出强化和细晶强化是铁素体高强钢的主要强化方式,其中析出强化增量高达380 MPa.

参考文献

[1] 汪小培,赵爱民,赵征志,黄耀,何建国,赵复庆.低碳铁素体钢中纳米尺寸碳化物的相间析出特征[J].材料热处理学报,2014(8):69-73.
[2] 孟征兵,吴光亮,刘新彬,周超洋,邢凯.N-Ti微合金化高强钢中的含Ti析出物[J].材料热处理学报,2014(04):106-110.
[3] 衣海龙,徐洋,刘振宇,王国栋.超快冷+层流冷却工艺对Mn-Ti钢组织与性能影响[J].材料热处理学报,2014(03):122-126.
[4] 李晓林,蔡庆伍,余伟,张恒磊.钒氮微合金化对ULCB钢组织性能和析出行为的影响[J].金属热处理,2013(01):35-39.
[5] Kim Y W;Song S W;Seo S J et al.Development of Ti and Mo micro-alloyed hot-rolled high strength sheet steel by controlling thermomechanical controlled processing schedule[J].Materials Science and Engineering A,2013,565:430-438.
[6] Kim Y W;Kim J H;Hong S G et al.Effects of rolling temperature on the microstructure and mechanical properties of Ti-Mo microalloyed hot-rolled high strength steel[J].Materials Science and Engineering A,2014,605:244-252.
[7] Wang Z Q;Yong Q L;Sun X J et al.An analytical model for the kinetics of strain-induced precipitation in titanium micro-alloyed steels[J].ISIJ International,2012,52(9):1661-1669.
[8] Wang g Q;Mao X P;Yang Z G et al.Strain-induced precipitation in a Ti micro-alloyed HSLA steel[J].Materials Science and Engineering A,2011,529:459-467.
[9] Wang Z Q;Sun X J;Yang Z G et al.Carbide precipitation in austenite of a Ti-Mo-containing low-carbon steel during stress relaxation[J].Materials Science and Engineering A,2013,573:84-91.
[10] Kang K B;Kwon O;Lee W B et al.Effect of precipitation on the recrystallization behavior of a Nb containing steel[J].Scripts Materialia,1997,36:1303-1308.
[11] Han Y;Shi J;Xu L et al.Effect of hot rolling temperature on grain size and precipitation hardening in a Ti-microalloyed low-carbon martensitic steel[J].Materials Science and Engineering A,2012,553:192-199.
[12] 赵小婷,宋国斌,李红斌.Ti含量对碳锰钢厚板力学性能的影响[J].热加工工艺,2012(14):77-79.
[13] 刘明哲,苑少强,梁国俐,刘义.微合金元素Nb,Mo在应变诱导析出过程中的相互作用[J].热加工工艺,2009(18):16-18.
[14] Funakawa Y;Shiozaki T;Tomita K;Yamamoto T;Maeda E .Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides[J].ISIJ International,2004(11):1945-1951.
[15] Wang T P;Kao F H;Wang S H et al.Isothermal treatment influence on nanometer-size carbide precipitation of titanium-bearing low carbon steel[J].Materials Letters,2011,65:396-399.
[16] 雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社,2006
[17] Pavlina E J;Speer J G;Van T C J .Equilibrium solubility products of molybdenum carbide and tungsten carbide in iron[J].Scripta Materialia,2012,66:243-246.
[18] Chen C Y;Yen H W;Kao F H et al.Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides[J].Materials Science and Engineering A,2009,499:162-166.
[19] Jang J H;Lee C H;Heo Y U et al.Stability of (Ti,M) C (M =Nb,V,Mo and W) carbide in steels using first-principles calculations[J].Acta Materialia,2012,60:208-217.
[20] Chen C Y;Chen C C;Yang J R .M icrostructure characterization of nanometer carbides heterogeneous precipitation in Ti-Nb and Ti-Nb-Mo steel[J].Materials Characterization,2014,88:69-79.
[21] Yen H W;Chen P Y;Huang C Y et al.Interphase precipitation of nanometer-sized carbides in a titanium-molybdenum-bearing low-carbon steel[J].Acta Materialia,2011,59:6264-6274.
[22] Bhadeshia H K D H .Diffusional transformations-A theory for the formation of superledges[J].PHYSICA STATUS SOLIDI A-APPLIED RESEARCH,1982,69:745-750.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%