表面增强拉曼散射(Surface enhanced Raman scattering,SERS)是一种灵敏度很高的生物检测技术.近年来有研究表明,在半导体纳米材料表面用贵金属修饰所得的结构具有很强的SERS效应.本文提出了一种基于负载金纳米颗粒的宽禁带半导体TiO2纳米线的SERS基底.TiO2纳米线的制备采用成本低廉、工艺简单的水热合成法,然后采用原位化学还原生长法负载Au纳米颗粒,最后引入罗丹明6G(R6G)作为探针分子,证明该SERS基底能有效增强拉曼信号,实现最低浓度为10-12mol/L的R6G的检测,适合应用于包括生物分子、有机污染等在内的有机分子的痕迹检测.
参考文献
[1] | A. Roguska;A. Kudelski;M. Pisarek;M. Lewandowska;M. Dolata;M. Janik-Czachor .Raman investigations of TiO_2nanotube substrates covered with thin Ag or Cu deposits[J].Journal of Raman Spectroscopy: An International Journal for Original Work in All Aspects of Raman Spectroscopy, Including Higher Order Processes, and Also Brillouin- and Rayleigh Scattering,2009(11):1652-1656. |
[2] | 高书燕,张树霞,杨恕霞,张洪杰.表面增强拉曼散射活性基底[J].化学通报(印刷版),2007(12):908-914. |
[3] | Deng Chao-Yue,Zhang Gu-Ling,Zou Bin,Shi Hong-Long,Liang Yu-Jie,Li Yong-Chao,Fu Jin-Xiang.TiO2/Ag composite nanowires for a recyclable surface enhanced Raman scattering substrate[J].中国物理B(英文版),2013(10):381-386. |
[4] | Agata Roguska;Andrzej Kudelski;Marcin Pisarek;Magdalena Opara;Maria Janik-Czachor .Surface-enhanced Raman scattering (SERS) activity of Ag, Au and Cu nanoclusters on TiO_2-nanotubes/Ti substrate[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2011(19):8182-8189. |
[5] | Castillo, F.;De La Rosa, E.;Pérez, E. .Gold aggregates on silica templates and decorated silica arrays for SERS applications[J].The European physical journal, D. Atomic, molecular, and optical physics,2011(2):301-306. |
[6] | Godhuli Sinha;Laura E. Depero;Ivano Alessandri .Recyclable SERS Substrates Based on Au-Coated ZnO Nanorods[J].ACS applied materials & interfaces,2011(7):2557-2563. |
[7] | Xuejiao Jiang;Liangliang Zhang;Taihong Wang;Qing Wan .High surface-enhanced Raman scattering activity from Au-decorated individual and branched tin oxide nanowires[J].Journal of Applied Physics,2009(10):104316-1-104316-5. |
[8] | J. M. Macak;L. V. Taveira;H. Tsuchiya;K. Sirotna;J. Macak;P. Schmuki .Influence of different fluoride containing electrolytes on the formation of self-organized titania nanotubes by Ti anodization[J].Journal of electroceramics,2006(1):29-34. |
[9] | 王秀丽,曾永飞,卜显和.模板法合成纳米结构材料[J].化学通报(印刷版),2005(10):723-730. |
[10] | Kasuga T.;Hoson A.;Sekino T.;Niihara K.;Hiramatsu M. .Formation of titanium oxide nanotube[J].Langmuir: The ACS Journal of Surfaces and Colloids,1998(12):3160-3163. |
[11] | Kasuga T.;Hoson A.;Sekino T.;Niihara K.;Hiramatsu M. .Titania nanotubes prepared by chemical processing[J].Advanced Materials,1999(15):1307-1311. |
[12] | Dana L. Morgan;Huai-Yong Zhu;Ray L. Frost .Determination of a Morphological Phase Diagram of Titania/Titanate Nanostructures from Alkaline Hydrothermal Treatment of Degussa P25[J].Chemistry of Materials: A Publication of the American Chemistry Society,2008(12):3800-3802. |
[13] | Yong Ding;Zhong Lin Wang .Structure Analysis of Nanowires and Nanobelts by Transmission Electron Microscopy[J].The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical,2004(33):12280-12291. |
[14] | Yoshida R;Suzuki Y;Yoshikawa S .Syntheses of TiO2(B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments[J].International Journal of Quantum Chemistry,2005(7):2179-2185. |
[15] | 陈闪山,朱银华,李伟,刘维佳,李力成,杨祝红,刘畅,姚文俊,陆小华,冯新.含TiO2(B)介孔氧化钛材料的制备、特性和应用[J].催化学报,2010(06):605-614. |
[16] | 杨立滨,江欣,陈雷,阮伟东,徐蔚青,赵冰.纳米TiO2 的光致发光性能与SERS效应的关系[J].高等学校化学学报,2010(05):1019-1022. |
[17] | REBECCA A. HALVORSON;PETER J. VIKESLAND .Surface-Enhanced Raman Spectroscopy (SERS) for Environmental Analyses[J].Environmental Science & Technology: ES&T,2010(20):7749-7755. |
[18] | Ko H;Singamaneni S;Tsukruk VV .Nanostructured Surfaces and Assemblies as SERS Media[J].Small,2008(10):1576-1599. |
[19] | Libin Yang;Xin Jiang;Weidong Ruan .Charge-Transfer-Induced Surface-Enhanced Raman Scattering on Ag-TiO2 Nanocomposites[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2009(36):16226-16231. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%