采用热丝化学气相沉积(HWCVD)技术在低温条件下(100℃)制备超薄(~30 nm)的硼掺杂硅薄膜.系统研究了氢稀释比例RH对薄膜的微结构和电学性能的影响.当RH由55增加至115,薄膜的有序度增加,晶化率升高,载流子浓度增加,暗电导率增加;同时,薄膜的缺陷密度增加、霍尔迁移率降低.实验证实,当RH=55~70时,超薄硅薄膜开始晶化,这是薄膜由非晶到纳米晶的转化区.快速热退火工艺进一步提高了薄膜导电率.在RH=115、衬底温度为100℃沉积条件下,经过420℃、80 s退火,获得电导率为6.88 S/cm的超薄硼掺杂纳米晶硅薄膜.
参考文献
[1] | Adhikary K;Ray S.Characteristics of p-type nanocrystalline silicon thin films developed for window layer of solar cells[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,200722/23(22/23):2289-2294. |
[2] | Hu ZH;Liao XB;Diao HW;Cai Y;Zhang SB;Fortunato E;Martins R.Hydrogenated p-type nanocrystalline silicon in amorphous silicon solar cells[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,20069/20(9/20):1900-1903. |
[3] | Kumar P;Kupich M;Grunsky D;Schroeder B.Microcrystalline B-doped window layers prepared near amorphous to microcrystalline transition by HWCVD and its application in amorphous silicon solar cells[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,20061/2(1/2):260-263. |
[4] | Rath JK.;Schropp REI..Incorporation of p-type microcrystalline silicon films in amorphous silicon based solar cells in a superstrate structure[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,19981/2(1/2):189-203. |
[5] | Sasaki T.;Tabuchi K.;Yoshida T.;Hama T.;Sakai H. Ichikawa Y.;Fujikake S..Structural study of p-type mu c-Si layer for solar cell application[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2000Pt.A(Pt.A):171-175. |
[6] | Taguchi, Mikio;Yano, Ayumu;Tohoda, Satoshi;Matsuyama, Kenta;Nakamura, Yuya;Nishiwaki, Takeshi;Fujita, Kazunori;Maruyama, Eiji.24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer[J].IEEE journal of photovoltaics,20141(1):96-99. |
[7] | Descoeudres, A.;Holman, Z. C.;Barraud, L.;Morel, S.;De Wolf, S.;Ballif, C..>21% Efficient Silicon Heterojunction Solar Cells on n- and p-Type Wafers Compared[J].IEEE journal of photovoltaics,20131(1):83-89. |
[8] | Matsumura H;Umemoto H;Masuda A.Cat-CVD (hot-wire CVD): how different from PECVD in preparing amorphous silicon[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,20040(0):19-26. |
[9] | Hironobu Umemoto;Kentaro Ohara;Daisuke Morita;Yoshitaka Nozaki;Atsushi Masuda;Hideki Matsumura.Direct detection of H atoms in the catalytic chemical vapor deposition of the SiH_(4)/H_(2) system[J].Journal of Applied Physics,20023(3):1650-1656. |
[10] | Akihisa Matsuda.Growth mechanism of microcrystalline silicon obtained from reactive plasmas[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,19991/2(1/2):1-6. |
[11] | Gogoi, P;Agarwal, P.Structural and optical studies on hot wire chemical vapour deposited hydrogenated silicon films at low substrate temperature[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,20092(2):199-205. |
[12] | Hsin-Yuan Mao;Dong-Sing Wuu;Bing-Rui Wu;Shih-Yung Lo;Hsin-Yu Hsieh;Ray-Hua Horng.Hot-wire chemical vapor deposition and characterization of p-type nanocrystalline SiC films and their use in Si heterojunction solar cells[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,20126(6):2110-2114. |
[13] | Sobajima, Y.;Kamanaru, S.;Muto, H.;Chantana, J.;Sada, C.;Matsuda, A.;Okamoto, H..Effect of thermal annealing and hydrogen-plasma treatment in boron-doped microcrystalline silicon[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,201217(17):1966-1969. |
[14] | Matsui T;Kondo M;Matsuda A.Doping properties of boron-doped microcrystalline silicon from B2H6 and BF3: material properties and solar cell performance[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,20040(0):646-650. |
[15] | Marinov M.;Zotov N..MODEL INVESTIGATION OF THE RAMAN SPECTRA OF AMORPHOUS SILICON[J].Physical Review.B.Condensed Matter,19975(5):2938-2944. |
[16] | Li, Z.;Li, W.;Jiang, Y.;Cai, H.;Gong, Y.;He, J..Raman characterization of the structural evolution in amorphous and partially nanocrystalline hydrogenated silicon thin films prepared by PECVD[J].Journal of Raman Spectroscopy: An International Journal for Original Work in All Aspects of Raman Spectroscopy, Including Higher Order Processes, and Also Brillouin- and Rayleigh Scattering,20113(3):415-421. |
[17] | S. Gupta;R. S. Katiyar;G. Morell;S. Z. Weisz;I. Balberg.The effect of hydrogen on the network disorder in hydrogenated amorphous silicon[J].Applied physics letters,199918(18):2803-2805. |
[18] | Droz C;Vallat-Sauvain E;Bailat J;Feitknecht L;Meier J;Shah A.Relationship between Raman crystallinity and open-circuit voltage in microcrystalline silicon solar cells[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,20041(1):61-71. |
[19] | Edelberg E.;Naone R.;Hall M.;Aydil ES.;Bergh S..LUMINESCENCE FROM PLASMA DEPOSITED SILICON FILMS[J].Journal of Applied Physics,19975(5):2410-2417. |
[20] | H. Chen;M.H. Gullanar;W.Z. Shen.Effects of high hydrogen dilution on the optical and electrical properties in B-doped nc-Si:H thin films[J].Journal of Crystal Growth,20041/2(1/2):91-101. |
[21] | Saitoh K;Kondo M;Fukawa M;Nishimiya T;Matsuda A;Futako W;Shimizu I.Role of the hydrogen plasma treatment in layer-by-layer deposition of microcrystalline silicon[J].Applied physics letters,199723(23):3403-3405. |
[22] | C. E. Nebel;M. Rother;M. Stutzmann;C. Summonte;M. Heintze.The sign of the Hall effect in hydrogenated amorphous and disordered crystalline silicon[J].Philosophical Magazine Letters,19966(6):455-463. |
[23] | Tabata, A.;Nakano, J.;Mazaki, K.;Fukaya, K..Film-thickness dependence of structural and electrical properties of boron-doped hydrogenated microcrystalline silicon prepared by radiofrequency magnetron sputtering[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,201023/24(23/24):1131-1134. |
[24] | Hsiao H.L.;Lee R.S.;Wang R.Y.;Wang K.C.;Hwang H.L.;Yang A.B.;Shieh Y.Y..Electrical and structural properties of low temperature boron- and phosphorus-doped polycrystalline silicon thin films prepared by ECR-CVD[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,19991(1):400-406. |
[25] | Shimakawa K..Percolation-controlled electronic properties in microcrystalline silicon: effective medium approach[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2000Pt.A(Pt.A):223-226. |
[26] | Wang, L.;Wang, W.;Huang, J.;Zeng, Y.;Tan, R.;Song, W.;Chen, J..Argon ion beam assisted magnetron sputtering deposition of boron-doped a-Si:H thin films with improved conductivity[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2013:177-180. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%