以工业硫酸氧钛为钛源,采用复合模板合成路线,分别于超声,微波和水热外场作用下合成了介孔二氧化钛前驱体.通过调节反应体系的pH值来控制TiOSO4液的水解和缩聚速率.煅烧脱除模板后得到锐钛型的介孔二氧化钛.产物采用XRD,氮等温吸附脱附,粒度分布,SEM,TEM,SAD和X射线能谱分析(XPS)等技术进行了表征.结果表明:具有强极化作用和温和水热环境的外场利于制备结构更佳的介孔二氧化钛;超声振动利于介观结构的形成.在微波辐照下,所制得介孔二氧化钛的比表面积为146.6 m2/g,平均孔径2.57 nm,晶粒尺寸13.65 nm.超声、微波和水热较常规合成方法更利于形成和稳定介孔结构.
The precursors of mesoporous titania were synthesized via composite templates route from industrial TiOSO4 solution under ultrasonic, microwave and hydrothermal field effect. The rate of hydrolysis and condensation of TiOSO4 solution was controlled by adjusting the pH value of the reacting system. Mesoporous titania with anatase phase was obtained after templates removal by calcinations. The as-prepared powder was characterized by XRD, N2 isothermal adsorption and desorption method, particle size distribution, SEM, TEM, SAD and XPS. External field with enhancing polar action and soft hydrothermal condition is adaptive to prepare better mesoporous titania. Ultrasonic vibration promotes the formation of mesoporous structure. Under microwave irradiation, mesoporous TiO2 was synthesized with BET surface area 146.6 m2/g,average pore diameter 2.57 nm and crystal size 13.65 nm. Ultrasonic, microwave irradiations and hydrothermal condition are better than conventional method in forming mesopore and stabilizing the structure.
参考文献
[1] | Kresge C T;Leonowicz M E;Roth W J et al.[J].Nature,1992,359(6397):710. |
[2] | Beck J S;Vartuli J C;Roth W J et al.[J].Journal of the American Chemical Society,1992,114(27):10834. |
[3] | Mark E Davis .[J].Nature,2002,417(6891):813. |
[4] | Hoffmann M R;Martin S T et al.[J].Chemical Reviews,1995,95(01):69. |
[5] | Puzenat E;Pichat P .[J].Journal of Photochemistry and Photobiology A:Chemistry,2003,160(1-2):127. |
[6] | Feringa B L;Huck N P;van Doren H A .[J].Journal of the American Chemical Society,1995,117(39):9929. |
[7] | Antonelli D .[J].Microporous and Mesoporous Materials,1999,30(2-3):315. |
[8] | Hirobumi S;Taku O;Tatsuya M et al.[J].Journal of the American Chemical Society,2005,127(47):16396. |
[9] | Suslick K S;Price G J .[J].Annual Review of Materials Science,1999,29:295. |
[10] | Wang Yanqin;Tang Xianghai;Yin Lunxiang et al.[J].Advanced Materials,2000,12(10):1183. |
[11] | Fantini MCA;Matos JR;da Silva LCC;Mercuri LP;Chiereci GO;Celer EB;Jaroniec M .Ordered mesoporous silica: microwave synthesis[J].Materials Science & Engineering, B. Solid-State Materials for Advanced Technology,2004(2/3):106-110. |
[12] | Hwang Y K;Chang J S;Kwon Y U et al.[J].Microporous and Mesoporous Materials,2004,68(01):21. |
[13] | Wilson G J;Matijasevich A S;Mitchell D R G et al.[J].Langmuir,2006,22(05):2016. |
[14] | Tan Ruiqin;He Yu;Zhu Yongfa et al.[J].Journal of Materials Science,2003,38(19):3973. |
[15] | Kartini I;Menzies D;Blake D;da Costa JCD;Meredith P;Riches JD;Lu GQ .Hydrothermal seeded synthesis of mesoporous titania for application in dye-sensitised solar cells (DSSCs)[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,2004(19):2917-2921. |
[16] | Shibata H;Mihara H;Mukai T et al.[J].Chemistry of Materials,2006,18(09):2256. |
[17] | Kolenko Y V;Burukhin A A;Churagulov B R et al.[J].Inorg Mater (Russia),2004,40(08):822. |
[18] | Stengl, V;Bakardjieva, S;Subrt, J;Szatmary, L .Titania aerogel prepared by low temperature supercritical drying[J].Microporous and Mesoporous Materials,2006(1/3):1-6. |
[19] | 田从学,张昭,何菁萍,侯隽.工业TiOSO4液复合模板合成有序介孔TiO2[J].四川大学学报(工程科学版),2006(01):63-67. |
[20] | 田从学,张昭,何菁萍.工业TiOSO4液合成有序介孔TiO2分子筛的研究[J].功能材料,2006(01):63-65,69. |
[21] | Gregg S J;Sing K S W.Adsorption,Surface Area and Porosity[M].London,UK:Academic Press,1982 |
[22] | Suslick K S;Choe S B;Cichowlas A A et al.[J].Nature,1991,353(6343):414. |
[23] | Afrafat A;Jansen J C .[J].Zeolites,1993,13(03):162. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%