欢迎登录材料期刊网

材料期刊网

高级检索

本文采用光还原法将Pt沉积到钙钛矿LaCoO3的表面制备出Pt-LaCoO3系列催化剂,通过光催化还原二氧化碳来评价催化剂的活性.考察不同牺牲剂对光沉积影响,由XRD、XPS和SEM表征分析表明,在LaCoO3上光沉积的铂颗粒以Pt、Pt(OH)2和PtO2的形式存在,空穴捕捉剂有助于Pt的还原和提高Pt颗粒的分散度,而Pt的还原程度主要取决于与钙钛矿LaCoO3导带电子能级和PtCl62-/Pt还原电势的大小.负载后催化剂的光催化活性提高,这是由于Pt负载到钙钛矿LaCoO3表面能够有效地防止光生电子和空穴在表面的复合.

参考文献

[1] Hwang D W;Cha K Y;Kim J .Photocatalytic degradation of CH3 Cl over a Nickel-laded layered perovskite[J].Industrial and Engineering Chemistry Research,2003,42(06):1184-1189.
[2] Hideki Kato;Akihiko Kudo .Water splitting into H_2 and O_2 on alkali tantalate photocatalysts ATaO_3 (A=Li,Na,and K)[J].The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical,2001(19):4285-4292.
[3] Kato H.;Asakura K.;Kudo A. .Highly efficient water splitting into H-2 and O-2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure[J].Journal of the American Chemical Society,2003(10):3082-3089.
[4] Hwang DW;Kirn HG;Lee JS;Kim J;Li W;Oh SH .Photocatalytic hydrogen production from water over m-doped La2Ti2O7 (M = Cr, Fe) under visible light irradiation (lambda > 420 nm)[J].The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical,2005(6):2093-2102.
[5] 刘美英,由万胜,雷志斌,高田冈,堂免一成,李灿.可见光作用下LaTaON2催化剂光催化分解水制氢[J].催化学报,2006(07):556-558.
[6] Hwang D W;Kim H G;Jang J S .Photoeatalytic decomposition of water-methanol solution over metal-doped layered perovskites under visible light irradiation[J].Catalysis Today,2004,93-95:845-850.
[7] Sakthivel S;Shankar M V;Palanichamy M .Enhancement of photocatalytic activity by metal deposition:characteriantion and photonic efficiency of Pt,Au and Pd deposited on TiO2 catalyst[J].Water Research,2004,3(13):3001-3008.
[8] Jia Lishan;Ding Tong;Li Qingbiao .Study of photocatalytic performance of SrFeO_(3_x)by ultrasonic radiation[J].Catalysis Communications,2007(6):963-966.
[9] Yang J C;Kim Y C;Shul Y G et al.Characterization of photoreduced Pt/TiO2 and decomposition of dichloroacetic acid over photoreduced Pt/TiO2 catalysts[J].Applied Surface Science,1997,121-122:525-529.
[10] Chun Hu;Yuchao Tang;Zheng Jiang;Zhengping Hao;Hongxiao Tang;Po Keung Wong .Characterization and photocatalytic activity of noble-metal-supported surface TiO_2/SiO_2[J].Applied Catalysis, A. General: An International Journal Devoted to Catalytic Science and Its Applications,2003(2):389-396.
[11] Chan MH;Ho WY;Wang DY;Lu FH .Characterization of Cr-doped TiO2 thin films prepared by cathodic arc plasma deposition[J].Surface & Coatings Technology,2007(4/7):962-966.
[12] 刘守新,曲振平,韩秀文,孙承林,包信和.Ag担载对TiO2光催化活性的影响[J].催化学报,2004(02):133-137.
[13] Alexander V V;Evgueni N S;Jin Z S .Influence of the foam of photodeposited platinum on titania upon its photocatalytic activity in CO and acetone oxidation[J].Journal of Photochemistry and Photobiology A:Chemistry,1999,125:113-117.
[14] Li F B;Li X Z .The enhancement of pholodegradation efficiency using Pt-TiO2 catalyst[J].Chemosphere,2002,48(10):1103-1111.
[15] 张青红,高濂.高度分散的Pt/TiO2的制备及光催化活性[J].化学学报,2005(01):65-70.
[16] 蔡乃才;简翠英;董庆华 .TiO2光催化剂表面载铂方法的研究[J].催化学报,1989,10(02):137-142.
[17] 王建祺;吴文辉;冯大明.电子能谱学(XPS/XAES/UPS)[M].北京:国防工业出版社,1992
[18] 刘守新,孙承林.金属离子的光催化去除研究进展[J].化学通报,2004(12):898-903.
[19] Thornton C T;Orchard A F .A study of LaCoO3 and rdatod materials by X-ray photoelectron spectroscopy[J].Journal of Physics C:Solid State Physics,1976,9:1991-1998.
[20] Veal B W;Lam D J .XPS study of LaCoO3[J].Journal of Applied Physics,1978,49(03):1461-1462.
[21] 王俊珍;傅希贤;杨秋华 等.钙钛矿型LaCoO3的光催化活性[J].应用化学,1999,16(03):97-99.
[22] Hou XG;Gu XN;Hu Y;Zhang JF;Liu AD .Enhanced Pt/TiO2 thin films prepared by electron beam irradiation[J].Nuclear Instruments and Methods in Physics Research, Section B. Beam Interactions with Materials and Atoms,2006(2):429-434.
[23] Xin B;Jing L;Ren Z et al.Effects of simultaneously doped and depooited Ag on the photocatalytic activity and surface states of TiO2[J].Journal of Physical Chemistry,2005,109:2805-2809.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%