材料导报, 2005, 19(6): 45-47.
聚合物电解质膜燃料电池用电催化剂的研究进展
1.同济大学材料学院功能高分子材料研究所,上海,200092
{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以N-乙烯甲酰胺为单体,异丙醇为溶剂和链转移剂,通过AIBN引发自由基聚合反应制备了聚(N-乙烯甲酰胺),并将聚(N-乙烯甲酰胺)在碱性条件下,80C水解6h,成功制备了分子量在10000以下的低分子量聚乙烯胺.通过红外、1 H-NMR表征了产物结构.通过GPC测定了聚乙烯胺的分子量.研究了引发剂用量对聚乙烯胺分子量的影响,结果表明,通过调控单体与引发的配比从100∶1增加到100∶10时,聚乙烯胺的数均分子量从8028g/mol降低至5355g/mol.","authors":[{"authorName":"杨晶晶","id":"302506b4-0b36-4e78-8d40-ed535e56f7e0","originalAuthorName":"杨晶晶"},{"authorName":"刘子慧","id":"9e9b738d-ddde-4342-8f17-8024ed391892","originalAuthorName":"刘子慧"},{"authorName":"侯婷婷","id":"c9e61bde-c04c-4410-a8a2-7a75e9606888","originalAuthorName":"侯婷婷"}],"doi":"","fpage":"11","id":"e9d7ec6c-7b49-4f10-8688-af387935e5d1","issue":"4","journal":{"abbrevTitle":"HCCLLHYYY","coverImgSrc":"journal/img/cover/HCCLLHYYY.jpg","id":"42","issnPpub":"1671-5381","publisherId":"HCCLLHYYY","title":"合成材料老化与应用"},"keywords":[{"id":"fd045b5b-1f28-4499-80a1-cccf5c18be05","keyword":"低分子量","originalKeyword":"低分子量"},{"id":"81377a40-73dd-422d-863c-e3e5ee677c58","keyword":"聚乙烯胺","originalKeyword":"聚乙烯胺"},{"id":"14b2fbfe-4937-4480-b2a5-13776d59c5ac","keyword":"自由基聚合","originalKeyword":"自由基聚合"},{"id":"704b9d47-59b5-44bd-8d7c-084e766ced47","keyword":"N-乙烯甲酰胺","originalKeyword":"N-乙烯甲酰胺"}],"language":"zh","publisherId":"hccllhyyy201604003","title":"低分子量聚乙烯胺的合成及其分子量测定","volume":"45","year":"2016"},{"abstractinfo":"利用合成的马来酸酐柠檬酸酯类大单体(MACA)与丙烯酸(AA)、烯丙基磺酸钠(SAS)等进行自由基聚合,制备出一种含短侧基低分子量的新型聚羧酸系减水剂.通过红外光谱、黏度、水泥净浆流动度和ζ电位等方法对共聚物的结构组成和性能进行了表征,并初步探讨了新型聚羧酸系减水剂与水泥的作用机理.研究表明:该减水剂有较好的分散性,且水泥净浆流动度保持性较好,无泌水离析现象;该减水剂与水泥粒子的塑化机理符合静电斥力与空间位阻理论.","authors":[{"authorName":"周科利","id":"5c95613e-4b7b-4879-be7f-673951d20ce2","originalAuthorName":"周科利"},{"authorName":"刘瑾","id":"926f1e14-0000-4d53-973f-633a171c6c22","originalAuthorName":"刘瑾"},{"authorName":"李真","id":"ccd69393-97f4-4719-b9bd-2ab8a307687e","originalAuthorName":"李真"}],"doi":"","fpage":"295","id":"7b48c727-7e02-4684-adf5-eaed0384c543","issue":"2","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"3cf4a423-cdab-4489-ac6f-786bc4297417","keyword":"聚羧酸系高效减水剂","originalKeyword":"聚羧酸系高效减水剂"},{"id":"9958a99e-ca54-4c91-9c99-95417f0d5209","keyword":"低分子量","originalKeyword":"低分子量"},{"id":"f2df95ed-e04f-4970-b1cc-6577daaac60c","keyword":"柠檬酸","originalKeyword":"柠檬酸"},{"id":"653f762e-595a-4ecb-b6e8-e2ae2885b897","keyword":"ζ电位","originalKeyword":"ζ电位"},{"id":"fdf8fc6d-cbb9-4e73-ad5d-5c813caa018c","keyword":"水化","originalKeyword":"水化"}],"language":"zh","publisherId":"clkxygc201102029","title":"含短侧基低分子量聚羧酸系减水剂的合成与作用机理探讨","volume":"29","year":"2011"},{"abstractinfo":"在前人降解壳聚糖的方法的基础上,通过异相法用H2O2、NaNO2降解壳聚糖得到了一系列分子量从几千到几万的低分子量壳聚糖,并就降解过程中反应温度、反应物浓度等条件对最终产物分子量的影响作了深入讨论,还就降解前后壳聚糖分子结构的变化、结晶状态的变化作了测试.结果表明,在40 ℃左右,H2O2用量2.5%,约24 h可以将原分子量60万的壳聚糖降低到2~4万,满足低分子量壳聚糖的应用需求.","authors":[{"authorName":"刘大同","id":"6cd8bbeb-33c0-4864-bf65-e413cf3874ab","originalAuthorName":"刘大同"},{"authorName":"张(弓岁)","id":"ec624cb8-0959-4077-b20a-670e307131a2","originalAuthorName":"张(弓岁)"},{"authorName":"徐敏","id":"205d4de1-aab5-4944-87bf-40773de4f126","originalAuthorName":"徐敏"},{"authorName":"余学海","id":"ab7f036a-beb7-4575-ad92-3c880fee020d","originalAuthorName":"余学海"}],"doi":"","fpage":"51","id":"19d6ac7d-677e-4442-acae-79d3b7beaacf","issue":"6","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"c0d7e325-331b-464c-abb9-dc48a20e686e","keyword":"壳聚糖","originalKeyword":"壳聚糖"},{"id":"182c56da-1d07-4c3c-b98b-272a80d99917","keyword":"降解","originalKeyword":"降解"},{"id":"2ed660ae-2246-48db-b804-87df6c516817","keyword":"分子量","originalKeyword":"分子量"}],"language":"zh","publisherId":"gfzclkxygc200206013","title":"异相法降解制备低分子量壳聚糖","volume":"18","year":"2002"},{"abstractinfo":"低分子量α,ω-双(2,6-二甲基羟苯基)聚苯醚(PPO-2OH)具有优异的电性能和耐热性能,改性后的热固性聚苯醚树脂是高性能覆铜板的理想基材之一.介绍了低分子量PPO-20H的合成方法和热固化改性研究过程,概述了近几年低分子量PPO-2OH针对覆铜板应用的研究进展.","authors":[{"authorName":"代三威","id":"9079aaf5-1d67-44f7-ab8c-e3db9a85d91b","originalAuthorName":"代三威"},{"authorName":"徐庆玉","id":"e4978f76-a1c1-4937-8d34-28d7b2c90f9c","originalAuthorName":"徐庆玉"},{"authorName":"刘发喜","id":"6a01f471-6894-432d-9606-4160492e68d6","originalAuthorName":"刘发喜"},{"authorName":"王洛礼","id":"dbd38147-5741-43e9-a590-0eff9e3f756b","originalAuthorName":"王洛礼"}],"doi":"10.3969/j.issn.1009-9239.2007.06.013","fpage":"43","id":"48c1f67a-6871-4cec-8a2d-b25432d89a1c","issue":"6","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"45c26348-5d81-45a1-8393-b61e4377c0af","keyword":"双端羟基聚苯醚","originalKeyword":"双端羟基聚苯醚"},{"id":"dc408eca-14b1-415a-a574-4a954026ad04","keyword":"覆铜板","originalKeyword":"覆铜板"},{"id":"7b785a0e-46e6-4931-91e1-2ebc7000cd84","keyword":"共混体系","originalKeyword":"共混体系"},{"id":"55143781-d646-47c3-b496-9b7df1a641c3","keyword":"官能化改性","originalKeyword":"官能化改性"}],"language":"zh","publisherId":"jycltx200706013","title":"覆铜板用低分子量双端羟基聚苯醚树脂","volume":"40","year":"2007"},{"abstractinfo":"研究了低分子量聚碳硅烷(PCS)通过先驱体浸渍裂解(PIP)工艺制备Cf/SiC复合材料.分析表明:PCS的数均分子量为400,活性较强,陶瓷化产率为70%左右,在1200℃基本转化为微晶态的β-SiC.分别通过3种不同升温速率制备了3D-Cf/SiC复合材料试样,其弯曲强度分别为745.2 MPa、686.7 MPa和762.5 MPa,明显高于文献报道3D-Cf/SiC复合材料弯曲强度300~500 MPa的水平.试样断口的SEM照片均显示长的纤维拔出,有良好的增韧效果,低分子量PCS裂解得到的基体比较致密.实验结果说明,低分子量PCS适合于制备3D-Cf/SiC复合材料,并且提高升温裂解速率对材料性能影响很小.","authors":[{"authorName":"邹世钦","id":"d2034632-6d43-40c4-b899-ed89570207f6","originalAuthorName":"邹世钦"},{"authorName":"张长瑞","id":"29beb805-430b-464e-b1ea-66fcb81ca5ce","originalAuthorName":"张长瑞"},{"authorName":"周新贵","id":"c6fb82a8-f840-4899-80e7-4445008ab9c7","originalAuthorName":"周新贵"},{"authorName":"曹英斌","id":"e5a285ac-815b-4a09-a6ef-00e5b53ff0f8","originalAuthorName":"曹英斌"}],"doi":"10.3321/j.issn:1000-3851.2005.05.019","fpage":"120","id":"d99fceee-18ce-4b32-93d9-df28ebf050aa","issue":"5","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"24369db5-839d-4215-82b3-a1f5e24bc583","keyword":"低分子量聚碳硅烷","originalKeyword":"低分子量聚碳硅烷"},{"id":"21873546-4a32-4e61-9665-b8c4ff45d837","keyword":"先驱体浸渍-裂解工艺","originalKeyword":"先驱体浸渍-裂解工艺"},{"id":"94e307c2-b38e-4519-80a8-1b83ad1a412b","keyword":"Cf/SiC复合材料","originalKeyword":"Cf/SiC复合材料"}],"language":"zh","publisherId":"fhclxb200505019","title":"低分子量聚碳硅烷制备3D-Cf/SiC复合材料","volume":"22","year":"2005"},{"abstractinfo":"通过对低分子量聚碳酸酯熔融流变性能的测试,讨论了此类聚碳酸酯在流变曲线上不同于通用标准级聚碳酸酯的特殊性.并提出微量吸湿改变其流动类型和产生润滑作用的观点.此外,还测定了相应流动活化能,并对其变化趋势进行了初步说明.","authors":[{"authorName":"唐晓斗","id":"f1fc9d70-4a10-422c-9ee0-136c909878ba","originalAuthorName":"唐晓斗"},{"authorName":"陈燕","id":"1c1ae744-70e4-4c98-a366-12250dad0261","originalAuthorName":"陈燕"},{"authorName":"平蕾","id":"d0f7308b-6da1-4184-895d-9c455ffe534e","originalAuthorName":"平蕾"},{"authorName":"奚涛","id":"c4dc7c65-3948-47e6-8055-1688e31d3be8","originalAuthorName":"奚涛"}],"doi":"","fpage":"69","id":"72783782-b28b-4c9d-b276-c8c35552c643","issue":"2","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"b1a8697b-b52b-44ec-bd9c-6815f12adbdc","keyword":"间规聚苯乙烯","originalKeyword":"间规聚苯乙烯"},{"id":"59c3fd3f-25a5-4ec0-9f9d-047680fdb94a","keyword":"非等温结晶动力学","originalKeyword":"非等温结晶动力学"},{"id":"50f71579-e6d0-4b44-a169-4f8bae1b9b5b","keyword":"差示扫描量热法","originalKeyword":"差示扫描量热法"}],"language":"zh","publisherId":"gfzclkxygc199902020","title":"低分子量聚碳酸酯的流变特性研究","volume":"","year":"1999"},{"abstractinfo":"以Ba(OH)2·8H2O为催化剂,在苯酚与甲醛摩尔比为1:2的条件下,采用一次逐步加入甲醛的方式合成了低分子量水溶性酚醛树脂.使用13C-NMR对产物结构进行表征,通过GPC、DSC测量最终产物的分子量及分布和热行为.结果表明:在Ba2+催化作用下的羟甲基化反应中,苯酚的邻位活性更高.合成的水溶性酚醛树脂是聚合度为2~4的聚合体的混合物,这些聚合体以邻-对位和对-对位方式连接形成亚甲基桥,有大量的高邻位取代羟甲基苯酚,树脂多分散指数为1.17,分子量分布较窄,DSC谱图分别在144~168℃和186~199℃出现两个独立的放热峰,树脂通过两步反应实现最终固化.","authors":[{"authorName":"罗翠锐","id":"7ce2ff9b-9c24-41f8-87f4-58661d59ea3f","originalAuthorName":"罗翠锐"},{"authorName":"翁凌","id":"25db74cf-7bc0-4141-ae6d-cf56d3b4f599","originalAuthorName":"翁凌"},{"authorName":"吴化军","id":"01117e9f-b8bb-4a14-a444-4e036c5e821d","originalAuthorName":"吴化军"},{"authorName":"李子帙","id":"93f117bc-0c23-422a-835a-aab6e490b20b","originalAuthorName":"李子帙"},{"authorName":"王凤春","id":"b537a254-d35f-4b68-a96c-00010858a512","originalAuthorName":"王凤春"},{"authorName":"朱兴松","id":"4f292e1b-b495-49e1-8c57-ae83e5bf3bed","originalAuthorName":"朱兴松"},{"authorName":"刘立柱","id":"ce865b49-e88d-4644-9740-1fec061655d7","originalAuthorName":"刘立柱"}],"doi":"10.3969/j.issn.1009-9239.2010.03.004","fpage":"12","id":"f1141113-a41b-4fa1-8e68-01fb3538b7d8","issue":"3","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"e988cba5-0b89-46f7-859e-bf73048729a8","keyword":"酚醛树脂","originalKeyword":"酚醛树脂"},{"id":"3ebffc6e-93e7-407e-9022-d54c7ef5a152","keyword":"分子结构","originalKeyword":"分子结构"},{"id":"30c09b27-bf5e-4f45-b9f4-9c9ef2484c23","keyword":"分子量分布","originalKeyword":"分子量分布"},{"id":"78b5c5e9-1e24-4478-9359-674da2000549","keyword":"固化行为","originalKeyword":"固化行为"}],"language":"zh","publisherId":"jycltx201003004","title":"低分子量水溶性酚醛树脂的合成及表征","volume":"43","year":"2010"},{"abstractinfo":"采用原位法和液相化学还原法制备了Ag/低分子量壳聚糖(LMWC)和Ag/LMWC-聚吡咯(PPy)复合胶乳,分析了各种工艺条件对复合胶乳中纳米Ag粒子粒径及粒度分布的影响规律,并确定了复合胶乳较适宜的合成条件.采用UV-Vis、TEM、FTIR及XRD对复合胶乳的组成和纳米Ag的形态进行了表征.结果显示:Ag/LMWC和Ag/LMWC-PPy复合胶乳中的纳米Ag晶体为面心立方结构,平均粒径约为10~20 nm.抗菌测试结果表明:LMWC(黏均分子量Mη=4.3×105)的抗菌效果优于未降解的原始壳聚糖(CS),由于纳米Ag的引入,Ag/LMWC和Ag/LMWC-PPy复合胶乳对大肠杆菌和金黄色葡萄球菌与单一的LMWC相比均具有较高的抑菌活性.","authors":[{"authorName":"王德松","id":"54a49b85-177e-4352-99f6-dccd4d1daeae","originalAuthorName":"王德松"},{"authorName":"张艳艳","id":"7af7c98d-042e-41b2-856d-3fc3df3ee284","originalAuthorName":"张艳艳"},{"authorName":"安静","id":"fcb2c710-5afe-4d01-b32b-dfc593336ace","originalAuthorName":"安静"},{"authorName":"罗青枝","id":"b9e0fe44-1545-4aa6-8587-59cac7911d4e","originalAuthorName":"罗青枝"},{"authorName":"李雪艳","id":"e61c23f8-6ff6-47ce-837e-621260e90cfd","originalAuthorName":"李雪艳"}],"doi":"","fpage":"1250","id":"e711ea7b-701d-423e-b68b-4ef4e45a26b9","issue":"5","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"5602c5b0-4eaf-4de6-879c-b2447c303a53","keyword":"纳米Ag粒子","originalKeyword":"纳米Ag粒子"},{"id":"873669e5-885d-4f7d-af91-3ab0d04aa7f5","keyword":"低分子量壳聚糖","originalKeyword":"低分子量壳聚糖"},{"id":"965fe60e-4da1-439c-b06e-f8f5d52984fe","keyword":"复合胶乳","originalKeyword":"复合胶乳"},{"id":"396675e5-c9ed-46d9-a54b-aca7214618e2","keyword":"结构表征","originalKeyword":"结构表征"},{"id":"9b0110af-26f6-473e-9387-d4b794dce5d6","keyword":"抑菌活性","originalKeyword":"抑菌活性"}],"language":"zh","publisherId":"fhclxb201405019","title":"Ag/低分子量壳聚糖复合胶乳的制备及抗菌性能","volume":"31","year":"2014"},{"abstractinfo":"通过将低分子量无规聚丙烯(LMWAPP)与商用 等规聚丙烯(IPP)共混,研究其发光性能,结果表明,低分子量无规聚丙烯对聚丙烯的发光起着 重要作用,随着聚丙烯中LMWAPP含量的增加,聚丙烯发光强度增加,当LMWAPP含量超过30%时, 发光强度达到饱和。","authors":[{"authorName":"戚嵘嵘","id":"7050833e-8672-4b3b-82f2-9a095e85fcc6","originalAuthorName":"戚嵘嵘"},{"authorName":"庞文民","id":"8487fb5c-8859-407f-b5bf-a2475946aea9","originalAuthorName":"庞文民"},{"authorName":"胡克良","id":"ac5baa36-db6b-4864-a235-4a8fd1376fa0","originalAuthorName":"胡克良"},{"authorName":"朱清仁","id":"35080f2b-82ab-4852-bc6e-f2358637b92e","originalAuthorName":"朱清仁"},{"authorName":"周贵恩","id":"871d5322-a342-4950-8452-de3b699390ae","originalAuthorName":"周贵恩"}],"doi":"","fpage":"102","id":"5b1038a1-f4ce-4c5d-8235-409525f095c2","issue":"2","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"de3c29da-3058-411d-aa07-0650a0684107","keyword":"低分子量无规聚丙烯/商用等规聚丙烯 共混物","originalKeyword":"低分子量无规聚丙烯/商用等规聚丙烯 共混物"},{"id":"fcebc918-3982-447e-9a1c-7033317addd3","keyword":"发光","originalKeyword":"发光"},{"id":"c09a86ae-eba5-4647-a198-58dd6ecf00a5","keyword":"聚集态结构","originalKeyword":"聚集态结构"}],"language":"zh","publisherId":"gfzclkxygc200102026","title":"低分子量无规聚丙烯与商用聚丙烯复合材料的紫外荧光性能","volume":"17","year":"2001"},{"abstractinfo":"用降解氯磺化聚乙烯橡胶(CSM)的方法制备了低分子量氯磺化聚乙烯(LMCSM),将其作大分子表面改性剂对纳米氮化硅(Si3N4)粉体进行表面修饰,对改性前后的纳米Si3N4粉体采用沉降实验、FT-IR、TEM、TGA等方法进行了表征. 结果表明,LMCSM对纳米Si3N4粉体的改性主要为化学改性,其化学利用率为54%,物理利用率为29%;改性后的纳米Si3N4粉体的表面自由能从142.6 J/M2降至66.89 J/M2,在三氯甲烷中分散良好.","authors":[{"authorName":"武艳","id":"30a75348-7330-4800-8982-aed9154fc9c4","originalAuthorName":"武艳"},{"authorName":"钱家盛","id":"6edda6f7-3582-487d-9134-88a9d754e0b4","originalAuthorName":"钱家盛"},{"authorName":"苗继斌","id":"638498c3-45c8-4895-bdaa-be930d6f228d","originalAuthorName":"苗继斌"},{"authorName":"夏茹","id":"0dbc804b-2aca-4093-8bab-f4c60247a830","originalAuthorName":"夏茹"},{"authorName":"章于川","id":"bc1395c9-1a96-47ed-9ca2-cc9ef7570aa8","originalAuthorName":"章于川"}],"doi":"10.3969/j.issn.1000-0518.2009.06.002","fpage":"629","id":"a2e8f333-231e-4797-bea3-0f6182a06b57","issue":"6","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"25c94d7f-d206-475d-bb82-05cba275d526","keyword":"低分子量氯磺化聚乙烯","originalKeyword":"低分子量氯磺化聚乙烯"},{"id":"e8f15de7-6822-4626-a9c2-e58ac0503746","keyword":"纳米Si3N4粉体","originalKeyword":"纳米Si3N4粉体"},{"id":"8eb85e92-591b-4fac-97d4-26df54118d97","keyword":"大分子表面改性剂","originalKeyword":"大分子表面改性剂"}],"language":"zh","publisherId":"yyhx200906002","title":"低分子量氯磺化聚乙烯对纳米Si3N4粉体表面处理","volume":"26","year":"2009"}],"totalpage":3324,"totalrecord":33233}