在差热扫描分析仪上以不同加热速率测试非晶Fe78Si11B9和纳米晶Fe73.5Cu1B7Si15.5Nb3合金晶化情况,采用Kissinger方程计算非晶Fe78Si11B9合金的激活能为(370±3)kJ,Fe73.5Cu1B7Si15.5Nb3纳米晶第一晶化相的激活能为(295±5)kJ;提出纳米晶Fe73.5Cu1B7Si15.5Nb3合金初晶相激活能较低与率先析出的Cu簇刺激晶化相析出有关;分析了Cu簇的析出动力学,计算出Fe73.5Cu1B7Si15.5Nb3合金在773 K保温3600 s时Cu簇的生长平均半径为3 nm,在773 K保温2.5h时,最大析出体积密度为3.7×1024/m3;计算结果与K.Hono试验观察结果一致(在673 K保温3600 s,平均半径3nm,析出Cu簇的密度数量级在1024/m3).
参考文献
[1] | Yoshizawa Y;Oguma Y;Yamauchi S .[J].Journal of Applied Physics,1988,64:6044. |
[2] | Graf T;Hampel G;Korus J et al.[J].Nanostructured Materials,1995,6:469. |
[3] | Hono K.;Ohnuma M.;Onodera H.;Ping DH. .Cu clustering and Si partitioning in the early crystallization stage of an Fe73.5Si13.5B9Nb3Cu1 amorphous alloy[J].Acta materialia,1999(3):997-1006. |
[4] | Hono K;Hiraga K;Wang Q .[J].Acta Metallurgica Et Materialia,1993,40:2137. |
[5] | Ohnuma M;Hono K;Linderoth S et al.[J].Acta Materialia,2000,48:4783. |
[6] | Chen Y M;Ohkubo T;Ohta M et al.[J].Acta Materialia,2009,57:4463. |
[7] | Makino A;Men H;Kubota T et al.[J].Journal of Applied Physics,2009,105:07A308. |
[8] | Ohta M;Yoshizawa Y .[J].Journal of Applied Physics,2008,103:07E722. |
[9] | Ohta M;Yoshizawa Y .[J].Journal of Magnetism and Magnetic Materials,2008,320:e750. |
[10] | Ayers D J;Harris G V;Sprague A J et al.[J].Acta Materiallia,1998,46:1861. |
[11] | Yoshizawa Y;Yamauchi K .[J].Materials Science and Engineering,1993,a133:176. |
[12] | Yifang Y O;Jie Z;Hongmei C et al.[J].Journal of Alloys and Compounds,2008,454:359. |
[13] | Ye F.;Lu K. .Crystallization kinetics of Al-La-Ni amorphous alloy[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2000(1/3):228-235. |
[14] | Rho IC.;Yoon CS.;Kim CK.;Byun TY.;Hong KS. .Microstructure and crystallization kinetics of amorphous metallic alloy: Fe54Co26Si6B14[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2003(2/3):289-296. |
[15] | Mathon MH.;Dunstetter F.;Maury F.;Lorenzelli N.;Denovion CH.;Barbu A. .EXPERIMENTAL STUDY AND MODELLING OF COPPER PRECIPITATION UNDER ELECTRON IRRADIATION IN DILUTE FECU BINARY ALLOYS[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,1997(2/3):224-237. |
[16] | Hung, P.K.;Vinh, L.T.;Kien, P.H. .About the diffusion mechanism in amorphous alloys[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2010(25/27):1213-1216. |
[17] | Flege S.;Hahn H.;Fecher U. .Diffusion in amorphous NiZrAl alloys[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2000(1/3):123-128. |
[18] | Hono K;Ping D H .[J].Materials Characterization,2000,44:203. |
[19] | Golubov SI.;Osetsky YN.;Barashev AV.;Serra A. .On the validity of the cluster model to describe the evolution of Cu precipitates in Fe-Cu alloys[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,2000(1):113-115. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%