欢迎登录材料期刊网

材料期刊网

高级检索

使用NETZSCH DIL 402C热膨胀仪与STA449F3综合热分析仪,对304不锈钢的高温膨胀与收缩系数、定压热容(cp )及差示扫描量热(DSC)曲线进行测试。测试结果表明:304不锈钢在升温过程中膨胀系数的范围为20.9700×10-6~21.5712×10-6K-1,降温过程中收缩系数范围为21.2528×10-6~21.9471×10-6K-1,膨胀及收缩系数较大,属裂纹敏感性钢种;在900~1400℃升温过程中,定压热容曲线波动幅度较大,存在晶型转变,铸坯稳定性较差,易产生缺陷;DSC 曲线测试中,升温过程在1420.8℃存在明显吸热峰,试样开始熔化,峰值温度为1438.86℃;降温过程中,1439℃时存在明显的放热峰,试样开始凝固,峰值温度为1435.6℃。在1439~1100℃降温过程中,曲线不平滑,热稳定性较差,有相变发生,初始坯壳生长不均匀,这些温度点属于结晶器中上部温度范围,此范围内铸坯易产生裂纹。

The DIL402C thermal dilatometer and STA449C thermal analyzer were employed to test the linear expan-sion and contraction coefficient,specific heat cp and DSC curve of 304 stainless steel.The result shows that the range of linear expansion coefficient was 20.9700×10-6~21.5712×10-6K-1 during heating and the range of linear con-traction coefficient was 21.2528×10-6~21.9471×10-6K-1 during cooling.The linear expansion and contraction coefficient were higher than other materials,so the 304 stainless steel belong to the crack sensitive steel.The curve of cp oscillates obviously during the 900~1 400℃ as temperature raise.Because of the transformation of crystalline shape occurs,the defects of casting blank occur easily.A endothermic peak exists obviously at 1 420.8℃ during the DSC test.The sample began to melt at 1 420.8℃and the peak temperature was 1 438.86℃in the heating step.The sample began to solidify at 1 439℃ and the peak temperature was 1 435.6℃ in the cooling step.During the 1 439~1 100℃ as temperature fell,the curve of DSC was unsmooth,the thermostability was bad and phase change occurs. These factors cause the initial solidified shell non-homogeneous.These temperature points belong to the upper of crystallizer,so the casting blank causes crackle easily during this temperature range.

参考文献

[1] 陈桂生,廖艳,曾亚光,付志勇,邓丽娟.材料热物性测试的研究现状及发展需求[J].中国测试,2010(05):5-8.
[2] Collocott S J;White G K .Thermal Expansion and Heat Ca-pacity of Some Stainless Steels and FeNi Alloys[J].Cryogen-ics,1986,26(07):402.
[3] 王启明;陈登福;高兴健 等.Q345 连铸坯热物理性能和高温物理性能研究[J].中国稀土学报,2008,26(01):517.
[4] Daw JE;Rempe JL;Knudson DL;Crepeau JC .Thermal expansion coefficient of steels used in LWR vessels[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,2008(2):211-215.
[5] 居春艳 .两种不锈钢的高温相变及热物理性能的研究[D].兰州理工大学,2008.
[6] 王文学,刘彩玲,王雨,杨拉道,左雁冰.2Cr13不锈钢高温特性及对连铸保护渣的要求[J].钢铁钒钛,2008(01):61-65.
[7] 潘艳华,陈登福,董凌燕,温良英.20CrMo连铸坯高温力学性能和热物理性能分析[J].重庆大学学报(自然科学版),2006(09):68-70,80.
[8] 荆德君,刘中柱,蔡开科.包晶相变对连铸坯初生坯壳凝固收缩的影响[J].钢铁研究学报,1999(03):9-13.
[9] 邓芬燕,马跃新,邹安全.高锰钢脆性相变的研究[J].企业技术开发(学术版),2007(02):19-21.
[10] 吴鑫 .不锈钢高温力学性能及高温物理性能研究[D].兰州:兰州理工大学,2010.
[11] 康丽,王洋,王恩刚,赫冀成.结晶器内连铸坯的热和应力状态数值模拟[J].中国冶金,2007(05):28-32.
[12] 罗森,祭程,朱苗勇,谭建平,胡黎宁,钟保军.基于凝固传热模型的轴承钢GCr15二冷研究与应用[J].中国冶金,2009(08):1-5.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%