等效夹杂方法是求解含杂质材料弹性应力场的一种有效方法,但是其解析求解只适用于椭球/椭圆类杂质问题.本文提出一种基于等效夹杂方法的数值化计算方法,介绍了其基本理论,并引入共轭梯度法求解该方法的一致性条件线性方程组.该方法通过计算区域的数值离散,能够实现对二维任意形状杂质弹性场的求解.将该方法得到的结果与解析解进行比较,验证了该方法的有效性.讨论了数值化等效夹杂方法在效率以及收敛性上的表现.通过对比证明,利用共轭梯度法实现该方法,能在保持精度的同时,相较于高斯消元法具有较大的效率优势.最后通过半椭圆杂质和氧化锆/氧化铝共挤复合材料算例验证了该方法处理任意形状杂质的能力.
参考文献
[1] | Mura T.Micromechanics of defects in solids[M].Dordrecht:Kluwer Academic,1993:22-25. |
[2] | Kuo CH.Stress disturbances caused by the inhomogeneity in an elastic half-space subjected to contact loading[J].International Journal of Solids and Structures,200726(26):860-873. |
[3] | Eshelby J D.The determination of the elastic field of an ellipsoidal inclusion,and related problems[J].Proceedings of the Royal Society of London.Series A:Mathematical and Physi calSciences,1957241(1226):376-396. |
[4] | Eshelby J D.The elastic field outside an ellipsoidal inclusion[J].Proceedings of the Royal Society of London.Series A:Mathematical and Physical Sciences,1959252(1271):561-569. |
[5] | Moschovidis Z A;Mura T.Two-ellipsoidal inhomogeneities by the equivalent inclusion method[J].ASME Journal of Applied Mechanics Review,197542(4):847-852. |
[6] | H. M. Shodja;A. S. Sarvestani.Elastic Fields in Double Inhomogeneity by the Equivalent Inclusion Method[J].Journal of Applied Mechanics,20011(1):3-10. |
[7] | 肖俊华;谢新亮;徐耀玲;蒋持平.双周期涂层纤维增强复合材料反平面剪切问题[J].复合材料学报,2008(3):168-173. |
[8] | Xiaoqing Jin;Leon M. Keer;Qian Wang.A Closed-Form Solution for the Eshelby Tensor and the Elastic Field Outside an Elliptic Cylindrical Inclusion[J].Journal of Applied Mechanics,20113(3):031009-1-031009-6. |
[9] | Liu, S.;Jin, X.;Wang, Z.;Keer, L.M.;Wang, Q..Analytical solution for elastic fields caused by eigenstrains in a half-space and numerical implementation based on FFT[J].International Journal of Plasticity,2012:135-154. |
[10] | Muskhelishvili N I.Some basic problems of the mathematical theory of elasticity[M].Cambridge:Cambridge University Press,1953:55-88. |
[11] | Buryachenko VA;Kushch VI.Effective transverse elastic moduli of composites at non-dilute concentration of a random field of aligned fibers[J].ZAMP: Zeitschrift fur Angewandte Mathematik und Physik: = Journal of Applied Mathematics and Physics: = Journal de Mathematiques et de Physique Appliquees,20063(3):491-505. |
[12] | Gong S X;Meguid S A.On the elastic fields of an elliptical inhomogeneity under plane deformation[J].Proceedings of the Royal Society of London.Series A:Mathematical and Physical Sciences,1993443(1919):457-471. |
[13] | Horii H;Nemat-Nasser S.Elastic fields of interacting inhomogeneities[J].International Journal of Solids and Structures,198521(7):731-745. |
[14] | Xiaoqing Jin;Zhanjiang Wang;Qinghua Zhou;Leon M. Keer;Qian Wang.On the Solution of an Elliptical Inhomogeneity in Plane Elasticity by the Equivalent Inclusion Method[J].Journal of Elasticity,20141(1):1-18. |
[15] | Behrooz Jalalahmadi;Farshid Sadeghi.A Voronoi Finite Element Study of Fatigue Life Scatter in Rolling Contacts[J].Journal of Tribology,20092(2):022203-1--022203-15-0. |
[16] | H.L. Yu;X.H. Liu;X.W. Li.FE analysis of inclusion deformation and crack generation during cold rolling with a transition layer[J].Materials Letters,200810/11(10/11):1595-1598. |
[17] | 王振清;雷红帅;王晓强;周博.纳米TiO2颗粒弱界面增强树脂基复合材料宏观力学行为有限元模拟[J].复合材料学报,2013(1):236-243. |
[18] | Buroni FC;Marczak RJ.A family of hole boundary elements for modeling materials with cylindrical voids[J].Engineering analysis with boundary elements,20087(7):578-590. |
[19] | C.Y. Dong;Kang Yong Lee.Boundary element implementation of doubly periodic inclusion problems[J].Engineering analysis with boundary elements,20068(8):662-670. |
[20] | Kuo CH.Contact stress analysis of an elastic half-plane containing multiple inclusions[J].International Journal of Solids and Structures,200816(16):4562-4573. |
[21] | Karkkainen K;Sihvola A;Nikoskinen;{?}K.Analysis of a three-dimensional dielectric mixture with finite difference method[J].IEEE Transactions on Geoscience and Remote Sensing,200139(5):1013-1018. |
[22] | Yuji Nakasone;Hirotada Nishiyama;Tetsuharu Nojiri.Numerical equivalent inclusion method: a new computational method for analyzing stress fields in and around inclusions of various shapes[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20001/2(1/2):229-238. |
[23] | GREGORY J. RODIN.ESHELBY'S INCLUSION PROBLEM FOR POLYGONS AND POLYHEDRA[J].Journal of the Mechanics and Physics of Solids,199612(12):1977-1995. |
[24] | Jin, XQ;Keer, LM;Wang, Q.New Green's function for stress field and a note of its application in quantum-wire structures[J].International Journal of Solids and Structures,200921(21):3788-3798. |
[25] | Chandrupatla T R;Belegundu A D.Introduction to finite elements in engineering[M].Englewood:Prentice-Hall Englewood Cliffs,1991:87-102. |
[26] | L?hner, R.;Mut, F.;Cebral, J.R.;Aubry, R.;Houzeaux, G..Deflated preconditioned conjugate gradient solvers for the pressure-Poisson equation: Extensions and improvements[J].International Journal for Numerical Methods in Engineering,20111/5(1/5):2-14. |
[27] | Shuangbiao Liu;Qian Wang;Geng Liu.A versatile method of discrete convolution and FFT (DC-FFT) for contact analyses[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,20001/2(1/2):101-111. |
[28] | Hiroyuki Miyazaki;Yu-ichi Yoshizawa;Kiyoshi Hirao.Preparation and mechanical properties of 10 vol. percent zirconia/alumina composite With fine-scale fibrous microstructure by co-extrusion process[J].Materials Letters,20049(9):1410-1414. |
[29] | Yang X;Hu X;Day R.Structure and deformation of high-modulus alumina-zirconia fibres[J].Journal of Materials Science,199227(5):1409-1416. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%