{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"双通TiO2纳米管阵列的成功制备可有效提高TiO2纳米管阵列的光催化活性,同时还可扩展其在太阳能电池、气体敏感器等方面的应用,具有很强的实际意义。在大量文献调研的基础上,综述了双通TiO2纳米管阵列的阳极氧化制备方法及其在催化与制氢、氢敏特性、分子过滤等方面的应用进展,并侧重讨论了双通TiO2纳米管阵列的分离机制。最后,对双通TiO2纳米管阵列的后续发展方向和应用前景进行了展望。","authors":[{"authorName":"贾永芳","id":"76ff2023-d782-403b-a7e9-d1e39f2607df","originalAuthorName":"贾永芳"},{"authorName":"蔡芳共","id":"1b1fdeb2-4de2-43a9-9935-ca71b061f78f","originalAuthorName":"蔡芳共"},{"authorName":"鲁双伟","id":"196c1723-5c5d-44e5-9793-263e01257ec8","originalAuthorName":"鲁双伟"},{"authorName":"杨峰","id":"de6cc682-e7f4-4057-9dab-b6724c2a31f7","originalAuthorName":"杨峰"},{"authorName":"赵勇","id":"98314f3b-be05-4ee6-a8a4-0c567a715751","originalAuthorName":"赵勇"}],"doi":"10.11896/j.issn.1005-023X.2016.013.004","fpage":"23","id":"75154267-3ea7-4b98-8757-6396c0e8891d","issue":"13","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"26dae19d-7beb-43cd-81ca-56a01447d196","keyword":"TiO2 纳米管阵列","originalKeyword":"TiO2 纳米管阵列膜"},{"id":"1a288eff-90cf-4033-be2b-816ebef2a9a9","keyword":"双通","originalKeyword":"双通"},{"id":"80c191b9-4772-4e43-b56e-ebef1c983afb","keyword":"分离","originalKeyword":"分离"},{"id":"8a04fdaa-9d7e-44bb-aadd-224d88cb89dd","keyword":"制备","originalKeyword":"制备"},{"id":"45a54be7-42b6-4d96-871d-e833e0c8293a","keyword":"应用","originalKeyword":"应用"}],"language":"zh","publisherId":"cldb201613004","title":"双通TiO2纳米管阵列制备及应用研究","volume":"30","year":"2016"},{"abstractinfo":"利用四辊卧式粉末轧机制备多孔钛板,并通过阳极氧化工艺在轧制多孔钛板上制备TiO2纳米管阵列.采用扫描电子显微镜(SEM)和X射线衍射仪(XRD)分别对TiO2纳米管阵列的形貌和物相进行表征,并对TiO2纳米管阵列的热稳定性和生物相容性进行了研究.结果表明,多孔钛板上初步制备的TiO2纳米管阵列为无定形相结构,在不同温度下可转化为锐钛矿型、金红石型或锐钛矿与金红石型的混合物;细胞培养实验表明,经阳极氧化及450℃退火处理后,粉末轧制多孔钛板表面细胞的黏附量比未经处理的多,且细胞发育良好.","authors":[{"authorName":"沈垒","id":"4b80f82f-d56a-4294-8b4f-1c3e8f90996e","originalAuthorName":"沈垒"},{"authorName":"李广忠","id":"33115ae3-dccc-4c18-96c4-933ea6cb020f","originalAuthorName":"李广忠"},{"authorName":"陈刚","id":"f4318740-da86-4bba-96a5-5ea95f27f04d","originalAuthorName":"陈刚"},{"authorName":"赵少阳","id":"875494d2-dc96-4954-88e8-ce3d03d97ac5","originalAuthorName":"赵少阳"},{"authorName":"李增峰","id":"9e20f823-496b-40b7-a753-fe3c8e19ec6f","originalAuthorName":"李增峰"},{"authorName":"葛渊","id":"fbcbc444-06cb-49f5-b731-da050af8ad7b","originalAuthorName":"葛渊"},{"authorName":"李亚宁","id":"f509d13d-e797-41fd-9d49-e48046706945","originalAuthorName":"李亚宁"}],"doi":"","fpage":"37","id":"c263bedd-4690-42e3-81aa-5a8ebf24e9aa","issue":"1","journal":{"abbrevTitle":"TGYJZ","coverImgSrc":"journal/img/cover/TGYJZ.jpg","id":"60","issnPpub":"1009-9964","publisherId":"TGYJZ","title":"钛工业进展"},"keywords":[{"id":"e286dd2f-2ed9-42f7-9e0a-8170514da30d","keyword":"多孔钛板","originalKeyword":"多孔钛板"},{"id":"bc7c026d-bb71-4655-b83c-7be12788515f","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"e8da4ebf-9e42-4aae-b6b5-a866dc5286fb","keyword":"TiO2纳米管阵列","originalKeyword":"TiO2纳米管阵列膜"},{"id":"34e9f3b9-7634-44ea-a3e3-bb67d6fe78c1","keyword":"生物相容性","originalKeyword":"生物相容性"}],"language":"zh","publisherId":"tgyjz201701009","title":"多孔钛板表面TiO2纳米管阵列的制备及表征","volume":"34","year":"2017"},{"abstractinfo":"综述了近年来有序TiO2纳米管阵列薄膜的制备、性质及其在能源、环境、生物组织工程等领域应用的研究进展.","authors":[{"authorName":"张文彦","id":"455390d9-b0fc-4810-82d7-1228dc947236","originalAuthorName":"张文彦"},{"authorName":"奚正平","id":"da0e8654-ab4a-430e-a8d5-99115261fdec","originalAuthorName":"奚正平"},{"authorName":"李广忠","id":"42208a1e-b805-496b-9311-36b239eb6753","originalAuthorName":"李广忠"},{"authorName":"李亚宁","id":"fa08dd5f-8959-4a99-9cbf-27b6a35d3717","originalAuthorName":"李亚宁"},{"authorName":"张健","id":"1e4e0b0d-de0f-45cf-908b-7c39ffbb401d","originalAuthorName":"张健"},{"authorName":"汤慧萍","id":"8b68c9ff-7094-4579-a5b7-1b9db7e7bded","originalAuthorName":"汤慧萍"}],"doi":"","fpage":"1876","id":"a1ef0086-a9ad-432c-b664-cf5ebfe56926","issue":"10","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"88edfcc1-83a9-4f9f-ae11-6c80ea1b6039","keyword":"钛","originalKeyword":"钛"},{"id":"814db403-f21d-4496-9adb-57ebeea93fbf","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"8d37c203-8697-49d1-9ec1-bc5155f6f612","keyword":"TiO2","originalKeyword":"TiO2"},{"id":"3026533c-6b21-4409-b99e-45cddfbb7622","keyword":"纳米管阵列","originalKeyword":"纳米管阵列"}],"language":"zh","publisherId":"xyjsclygc200910042","title":"有序TiO2纳米管阵列材料的研究进展","volume":"38","year":"2009"},{"abstractinfo":"采用阳极氧化法,在钛箔上制备TiO2纳米管阵列,并利用HF气体去处其阻挡层,并作了SEM,Uv-Vis表征,表明获得了具有光催化性能的双通TiO2纳米管阵列.以双通TiO2纳米管阵列为光催化剂,在紫外光照射下进行甲基橙的降解实验,2 h内甲基橙降解率可以达到86%(A=484 nm),发现其光催化降解甲基橙的效果明显较好.","authors":[{"authorName":"李广忠","id":"2cadcb98-a511-4351-b6a5-07a8fbc5956b","originalAuthorName":"李广忠"},{"authorName":"张文彦","id":"5d460150-f46a-4725-99c6-dd99479c4104","originalAuthorName":"张文彦"},{"authorName":"张健","id":"256813c2-52d4-4e5c-81de-0f75848dee4b","originalAuthorName":"张健"},{"authorName":"汤慧萍","id":"e3045ace-859c-4276-bae8-ec2cdcdbe103","originalAuthorName":"汤慧萍"}],"doi":"10.3969/j.issn.1009-9964.2008.03.010","fpage":"42","id":"da5730c5-0be6-46e5-beff-47f1c6b62255","issue":"3","journal":{"abbrevTitle":"TGYJZ","coverImgSrc":"journal/img/cover/TGYJZ.jpg","id":"60","issnPpub":"1009-9964","publisherId":"TGYJZ","title":"钛工业进展"},"keywords":[{"id":"476fa7c8-e1c1-4bcb-b454-d33cef17add5","keyword":"双通TiO2纳米管阵列","originalKeyword":"双通TiO2纳米管阵列"},{"id":"c5ea596e-22cf-47c3-ad68-d7aeccbfac6e","keyword":"光催化","originalKeyword":"光催化"},{"id":"72e50331-28ae-47ab-b1e9-0c3c4c0ceea5","keyword":"制备","originalKeyword":"制备"}],"language":"zh","publisherId":"tgyjz200803010","title":"双通TiO2纳米管阵列光催化的研制","volume":"25","year":"2008"},{"abstractinfo":"采用电化学阳极氧化法以含氟的乙二醇溶液为电解液阳极氧化纯钛制备出排列规则的高长径比TiO2纳米管阵列,并用扫描电镜(SEM)、比表面积仪表征了TiO2纳米管阵列的形貌和比表面积。结果表明,所制得的TiO2纳米管阵列径约180nm,长可达230μm,比表面积约59.8m2/g。以牛血清白蛋白(BSA)为药物蛋白分子的模型,并研究了TiO2纳米管阵列对BSA的吸附和脱附行为,考察了溶液pH值、BSA初始浓度和溶液离子强度对BSA吸附的影响与吸附态的BSA在不同pH值的PBS溶液中的释放行为。结果表明,BSA分子在其等电点(pH值=4.8)附近较容易吸附到TiO2纳米管上,吸附量随着BSA初始浓度的增加而增加,较高的离子强度会降低BSA的吸附,碱性条件下吸附态的BSA容易从TiO2纳米管上脱附,并由于纳米管的扩散限制效益呈现一定程度的缓释。","authors":[{"authorName":"肖秀峰","id":"16ce0055-dd50-4832-a499-4b22776f6319","originalAuthorName":"肖秀峰"},{"authorName":"梁建鹤","id":"253d71cc-8be4-4c3a-ac87-dabd4d40f821","originalAuthorName":"梁建鹤"},{"authorName":"汤海贞","id":"c9826a70-43bc-481c-a1b1-6e5feb12fe28","originalAuthorName":"汤海贞"},{"authorName":"杨小娟","id":"eb9179c1-5603-4747-97b3-df7b5b346945","originalAuthorName":"杨小娟"},{"authorName":"刘榕芳","id":"011cbebd-2d03-403f-9c6a-f7d907d05c77","originalAuthorName":"刘榕芳"}],"doi":"","fpage":"3092","id":"6d00bb1a-6487-42b3-b213-6094291e49a4","issue":"22","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"a67c6c1f-330d-43f0-ad96-477a8427607d","keyword":"电化学阳极氧化法","originalKeyword":"电化学阳极氧化法"},{"id":"c51e460e-51fc-4412-befb-b197d3cb9e6a","keyword":"TiO2纳米管阵列","originalKeyword":"TiO2纳米管阵列"},{"id":"01bef3ca-86f2-4e28-a31f-260ed3f30542","keyword":"牛血清白蛋白","originalKeyword":"牛血清白蛋白"}],"language":"zh","publisherId":"gncl201222014","title":"TiO2纳米管阵列对牛血清白蛋白的吸附与脱附","volume":"43","year":"2012"},{"abstractinfo":"采用阳极氧化法在纯钛表面制备TiO2纳米管阵列层,利用XRD、FESEM等研究了阳极氧化时间、氧化电压以及退火对TiO2纳米管形貌和结构的影响,并讨论了其形成机理。结果表明:采用此方法可在纯钛表面制备出排列有序的TiO2纳米管阵列层;随着氧化电压的升高,纳米管直径增大,管状特征明显;随着氧化时间的延长,纳米管尺寸更均匀,排列更整齐;退火前,纳米管为无定形态,经450℃退火后,TiO2大部分为锐钛矿相,少部分为金红石相。","authors":[{"authorName":"王淑芳","id":"3366550c-1f67-4446-ac54-1abc4e57fb70","originalAuthorName":"王淑芳"},{"authorName":"李生娟","id":"74ec6624-ebad-4b45-80d9-114c9f926645","originalAuthorName":"李生娟"},{"authorName":"李来强","id":"ae38173e-4755-4cda-b322-89418240e4e7","originalAuthorName":"李来强"},{"authorName":"王树林","id":"7597ce61-5440-44ea-9c47-08fc9df11999","originalAuthorName":"王树林"}],"doi":"","fpage":"106","id":"6abbb5ca-6b5d-40f1-96df-0180c7123477","issue":"11","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"8c765fd6-3397-4268-adb9-97fb421a8585","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"18c1d742-563f-42ac-a512-da0d96490627","keyword":"氧化钛","originalKeyword":"氧化钛"},{"id":"910476f5-b2f1-4254-ade0-19241024d427","keyword":"纳米管","originalKeyword":"纳米管"}],"language":"zh","publisherId":"jxgccl201111028","title":"阳极氧化法制备TiO2纳米管阵列及其表征","volume":"35","year":"2011"},{"abstractinfo":"采用阳极氧化法在钛片上制备了TiO2纳米管阵列光电极, 利用扫描电子显微镜(SEM)和X射线衍射仪(XRD) 对TiO2纳米管的形貌和结构进行了表征, 详细考察了氧化工艺参数对纳米管阵列形貌的影响, 并通过稳态光电响应技术对TiO2纳米管电极的光电化学性能进行了研究. 结果表明, 在1wt HF电解液中, 控制氧化电压为20V, 反应30min后, 在Ti表面获得了垂直导向的TiO2纳米管阵列, 孔径约为90nm, 管壁厚度约为10nm. 经600℃退火处理后, TiO2纳米管阵列为锐钛矿型与金 红石型的混晶结构, 此时电极的光电性能最佳, 与TiO2纳米多孔电极相比, 光电性能大幅提高.","authors":[{"authorName":"李贺","id":"c1dd1d35-c7eb-45c6-9855-32dfaa4969b6","originalAuthorName":"李贺"},{"authorName":"姚素薇","id":"4a5bd892-7af6-4289-b0b6-e2690e9711d2","originalAuthorName":"姚素薇"},{"authorName":"张卫国","id":"f19d9143-378d-4331-93bd-e3e257ecf863","originalAuthorName":"张卫国"},{"authorName":"王宏智","id":"244fd233-c0db-4c57-ac1e-aeb94bbb294a","originalAuthorName":"王宏智"},{"authorName":"贲宇恒","id":"01df1568-46d9-4ed4-9e42-8889eadc48f0","originalAuthorName":"贲宇恒"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2007.00349","fpage":"349","id":"a39bf1f8-5191-4a9a-8e2d-220a53cca17a","issue":"2","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"ff4cd619-26e3-4048-8184-6988841f994c","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"1c24497a-746e-4c0e-bfcb-c1ef4d7ed769","keyword":" TiO2 nanotubes","originalKeyword":" TiO2 nanotubes"},{"id":"e1b28cef-37aa-4d08-b033-076fb04315ed","keyword":" array","originalKeyword":" array"},{"id":"252f043f-cd33-4b73-93c3-dc5efe6b63e5","keyword":" photoelectrochemistry","originalKeyword":" photoelectrochemistry"}],"language":"zh","publisherId":"1000-324X_2007_2_16","title":"阳极氧化法制备TiO2纳米管阵列及其光电性能研究","volume":"22","year":"2007"},{"abstractinfo":"采用阳极氧化法在钛片上制备了TiO2纳米管阵列光电极,利用扫描电子显微镜(SEM)和X射线衍射仪(XRD)对TiO2纳米管的形貌和结构进行了表征,详细考察了氧化工艺参数对纳米管阵列形貌的影响,并通过稳态光电响应技术对TiO2纳米管电极的光电化学性能进行了研究.结果表明,在1wt%HF电解液中,控制氧化电压为20V,反应30min后,在Ti表面获得了垂直导向的TiO2纳米管阵列,孔径约为90nm,管壁厚度约为10nm.经600℃退火处理后,TiO2纳米管阵列为锐钛矿型与金红石型的混晶结构,此时电极的光电性能最佳,与TiO2纳米多孔电极相比,光电性能大幅提高.","authors":[{"authorName":"李贺","id":"0cdf1279-c533-45bf-acc1-acb41c42853e","originalAuthorName":"李贺"},{"authorName":"姚素薇","id":"af6f3e1d-34ec-4bee-a107-c889f723d53e","originalAuthorName":"姚素薇"},{"authorName":"张卫国","id":"05b8c6b4-930c-4f34-bd51-681f91b6dbb8","originalAuthorName":"张卫国"},{"authorName":"王宏智","id":"dec8ea63-3a3f-4f29-98de-8b4f3abd86fc","originalAuthorName":"王宏智"},{"authorName":"贲宇恒","id":"00923b8f-faea-464d-a2aa-f94c0072bae1","originalAuthorName":"贲宇恒"}],"doi":"10.3321/j.issn:1000-324X.2007.02.032","fpage":"349","id":"4adc8009-e5ab-45a3-a7f9-7543996302d1","issue":"2","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"6a6aa12f-f8f6-4384-ad69-6fa3f8ee911c","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"0393d0fd-a739-4fbd-830a-0b2fd67fb13f","keyword":"TiO2纳米管","originalKeyword":"TiO2纳米管"},{"id":"e322094e-0ba0-4999-96ae-09c9f3c968ae","keyword":"阵列","originalKeyword":"阵列"},{"id":"47c946ed-6e80-40ed-b189-3ba23c501699","keyword":"光电化学","originalKeyword":"光电化学"}],"language":"zh","publisherId":"wjclxb200702032","title":"阳极氧化法制备TiO2纳米管阵列及其光电性能研究","volume":"22","year":"2007"},{"abstractinfo":"采用电化学阳极氧化法在HF酸水溶液中使纯钛表面生成结构致密有序的TiO2纳米管阵列薄膜,考察了阳极氧化电压和阳极氧化时间对TiO2纳米管阵列形貌的影响,讨论了TiO2纳米管的形成机理.采用复阻抗谱方法,测量了获得的TiO2纳米管阵列薄膜在不同湿度下的电阻-电抗曲线和相位角-频率曲线,由此分析得到,试样的等效电路由2个RC并联回路串联而成,并拟合出等效电路各元件的参数值,说明TiO2纳米管阵列薄膜表面对湿度变化有较好的响应.","authors":[{"authorName":"王红","id":"ff98310c-3c98-49fa-8dbe-48df9dfd25b0","originalAuthorName":"王红"},{"authorName":"傅刚","id":"7e6f028b-dcc3-4519-99b0-b1d38c241ffa","originalAuthorName":"傅刚"},{"authorName":"陈环","id":"96cef0cb-12c2-45c6-bfcc-9380ae9fd4e6","originalAuthorName":"陈环"},{"authorName":"刘志宇","id":"77242276-0cda-4826-adab-b97b35a84248","originalAuthorName":"刘志宇"}],"doi":"","fpage":"100","id":"d6c89ddb-0775-4670-a944-174a0271ea49","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"93cdfde8-4462-40e8-a777-99c149d85116","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"0630a096-6e03-4b90-ad9f-9c6a8a582dc1","keyword":"TiO2","originalKeyword":"TiO2"},{"id":"208d560b-06db-493b-abe9-2e49e437681d","keyword":"纳米管阵列","originalKeyword":"纳米管阵列"},{"id":"da96282d-2f44-42c4-aed2-d4243a5cda62","keyword":"湿度","originalKeyword":"湿度"},{"id":"b00ffea0-98ca-49a7-9bcd-5e125549a79c","keyword":"复阻抗分析","originalKeyword":"复阻抗分析"}],"language":"zh","publisherId":"cldb2008z1032","title":"TiO2纳米管阵列的制备及复阻抗分析","volume":"22","year":"2008"},{"abstractinfo":"以应用需求为导向,评述了近年来TiO2纳米管阵列体系的研究现状和发展趋势,主要包括TiO2纳米管阵列的阳极氧化法制备过程和发展趋势及其在光催化降解有机污染物、太阳能电池、氢气敏传感器以及光解水制氢等方面所取的进展.并展望了TiO2纳米管阵列的研究方向.","authors":[{"authorName":"李岗","id":"6a31ede6-9857-4c0f-a9f0-b07929dd1974","originalAuthorName":"李岗"},{"authorName":"方明","id":"9cc8e33c-4f2a-4738-842e-910f762254bb","originalAuthorName":"方明"},{"authorName":"张立德","id":"dc755941-69d4-4eec-b549-c7db42d69490","originalAuthorName":"张立德"},{"authorName":"金震","id":"4658046b-97eb-4162-8914-1fe3b0d69575","originalAuthorName":"金震"}],"doi":"","fpage":"160","id":"f5113155-804a-4698-a76d-8b693f9ba6d5","issue":"15","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"b77e3906-ecfd-4a69-968f-b02818a5a4eb","keyword":"TiO2","originalKeyword":"TiO2"},{"id":"8be636b5-e21e-4249-8180-cb8796c6ca80","keyword":"纳米管","originalKeyword":"纳米管"},{"id":"9fb50815-1df4-4adf-bdb0-bf18ac42442c","keyword":"阵列","originalKeyword":"阵列"},{"id":"bd0e7d7c-6fdb-4014-a777-82b5e62d3a05","keyword":"阳极氧化","originalKeyword":"阳极氧化"}],"language":"zh","publisherId":"cldb201215031","title":"阳极氧化 TiO2纳米管阵列的研究进展","volume":"26","year":"2012"}],"totalpage":10466,"totalrecord":104659}