欢迎登录材料期刊网

材料期刊网

高级检索

利用冷冻干燥法制备了β-CaSiO_3/丝素蛋白复合支架材料,经XRD和FTIR分析表明复合支架中丝素的结构主要以β-折叠为主;SEM分析显示材料孔隙分布均匀,孔连通性较好,孔径尺寸约为100~300μm.对支架的孔隙率和机械强度等性能进行了表征,研究表明复合支架的孔隙率为83%~87%,机械强度有较大提高.应用模拟体液浸泡实验研究了复合支架的体外生物活性,并用XRD、FESEM和EDS对试样表面进行了表征;结果显示,样品经模拟体液浸泡3天后,表面都能沉积出类骨羟基磷灰石(HA)层,β-CaSiO_3的加入能加快复合支架表面沉积类骨HA的速度.研究结果显示β-CaSiO_3/丝素蛋白复合支架材料有望作为强度较好的生物活性硬组织修复材料.

β-CaSiO_3/silk fibroin (SF) scaffolds with interconnected pore structures were prepared by freezing-drying. XRD and FTIR analysis suggested that the SF was in β-sheet structure. The as-prepared β-CaSiO_3/SF scaffolds showed good homogeneity and interconnected pores of about 100-300μm in diameter by SEM. The characterization of scaffolds were studied by means of porosity,mechanical properties and so on. Results showed that the composite scaffolds owned a higher ratio of mechanical intensity as compared to that of the pure SF porous scaffolds. Field emission scanning electron microscopy (FESEM) and energy-dispersive spectrometer (EDS) analysis on the scaffolds surface after immersion in SBF for 3days revealed that a hydroxyapatite layer (HA) was formed on the composite scaffolds. The speed of HA deposition were different between different materials,when β-wollastonite were added into SF scaffold,the speed of HA deposition was obviously accelerated. All these results indicated that β-CaSiO_3/SF composite scaffold materials may be potential candidates as good compressive strength and bioactive scaffolds for hard tissue repair and tissue engineering applications.

参考文献

[1] 彭图治,祝方猛,杨丽菊,程琼,唐婷,陈建勇.丝蛋白膜免疫传感器的研制及临床分析应用[J].应用科学学报,1999(01):13-17.
[2] Mori H;Tsukada M .[J].Reviews in Molecular Biotechnology,2000,74:95-100.
[3] Unger RE;Wolf M;Peters K;Motta A;Migliaresi C;James Kirkpatrick C .Growth of human cells on a non-woven silk fibroin net: a potential for use in tissue engineering.[J].Biomaterials,2004(6):1069-1075.
[4] Siriphannon P.;Kameshima Y. .Influence of preparation conditions on the microstructure and bioactivity of #alpha#-CaSiO_3 ceramics: Formation of hydroxyapatite in simulated body fluid[J].Journal of biomedical materials research, Part B. Applied biomaterials,2000(1):30-39.
[5] Liu XY.;Ding CX.;Chu PK. .Mechanism of apatite formation on wollastonite coatings in simulated body fluids[J].Biomaterials,2004(10):1755-1761.
[6] Lin K L;Chang J;Zhai W Y et al.[J].nf Ceram Intern,2005,31(02):323-326.
[7] Zhong J P;Hench L L et al.[J].Journal of Inorganic Materials,1995,10(02):129-138.
[8] L.L. Hench,I. Xynos,A. Edgar,L. Buttery,J. Polak,钟吉品,刘宣勇,常江.激活基因的玻璃[J].无机材料学报,2002(05):897-909.
[9] Boccaccini A R;Rother J A;HenchL L et al.[J].Ceramic Eng Sci Proc,2002,23:805-816.
[10] 万祥辉,常程康,毛大立.化学沉淀法制备纳米硅酸钙及其在模拟体液中的活性行为[J].材料科学与工程学报,2005(02):230-234.
[11] 郑敏,朱海霖,冯新星,朱宝来,陈建勇.纳米TiO2/丝素蛋白多孔材料的结构和性能[J].蚕业科学,2008(02):284-288.
[12] Yang J;Shi G;Bei J et al.[J].Journal of Biomedical Materials Research,2002,62:428-446.
[13] Lu HH;Pollack SR;Ducheyne P .Temporal zeta potential variations of 45S5 bioactive glass immersed in an electrolyte solution.[J].Journal of biomedical materials research, Part B. Applied biomaterials,2000(1):80-87.
[14] Kokubo T .[J].Journal of Non-Crystalline Solids,1990,120:138-157.
[15] 钱国坻;姚予梁 .[J].苏州丝绸工学院学报,1983,3(04):26-30.
[16] Salinas A J;Vallet-Regi M;Iaquierdo-Barba I.[J].Journal of Sol-Gel Science and Techonology,2001(21):13-25.
[17] 苟中入,常江,翟万银,林开利,曾毅.γ-硅酸二钙陶瓷的生物活性和细胞毒性研究[J].无机材料学报,2005(04):914-920.
[18] Kong L J;Gao Y;Cao W L et al.[J].Journal of Biomedical Materials Research Part A,2005,75:3275.
[19] Wu C S;Yin Y J;Yang Y et al.[J].Clinical Rehabilitation,2004,8:3929.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%