利用热力学理论对亚稳态体相内部活化分子的聚集状态进行讨论,发现在无外界扰动的平衡状态下,体相内部活化分子绝大多数以单体形式存在,并给出了单体与聚集体的浓度关系.在聚集体浓度与聚集体内部分子数之间关系分析的基础上,推导出临界聚集浓度的表达式,从而确定体相处于过热(过冷)极限点时的内部分子能量分布特性,借以从分子聚集的角度来描述气液相变的物理图景.同时,利用体相在过热(过冷)极限点处的宏观性质来逆推体相与微小新相之间的界面张力γ,从而对经典理论的形核率作出修正.
参考文献
[1] | Gibbs J W.On the Equilibrium of Heterogeneous Substance[M].Collected Works, New York: Longmanns, Green and Co,1928 |
[2] | Reiss H .Translation Rotation Paradox in the Theory Nucleation[J].Journal of Chemical Physics,1968,48:5553-5561. |
[3] | Reiss H .Theory of the Liquid Drop Model[J].Industrial and Engineering Chemistry Research,1952,44(06):1284-1288. |
[4] | 林瑞泰.沸腾换热[M].北京:科学出版社,1988:14-26. |
[5] | Hemmingsen E A .Spontaneous Formation of Bubble in Gas Supersaturated Water[J].Nature,1977,267:141-142. |
[6] | Kwak H;Panton R L .Gas Bubble Formation in Nonequilibrium Water-Gas Solutions[J].Journal of Chemical Physics,1983,78(09):5795-5799. |
[7] | Kwak H;Lee S .Homogeneous Bubble Nucleation Predicted by a Molecular Interaction Model[J].Transactions of the ASME,1991,113:714-721. |
[8] | 童景山.分子聚集理论及其应用[M].北京:科学出版社,1999:141-145. |
[9] | 施明恒;甘永平;马重芳.沸腾和凝结[M].北京:高等教育出版社,1995:8-12. |
[10] | 李文凯;任连伟;陈嘉宾 .用分子相互作用模型预测纯液体的均匀核化过热极限[J].大连理工大学学报,1996,36(04):439-444. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%