基于某钢铁企业的统计数据,分别利用概率分布和相关性分析对该钢铁企业富余煤气量的特性和规律进行了研究.结果表明:富余煤气量的概率分布可以作为钢铁企业煤气系统性能衡量的指标之一,且全年的富余量呈现正态分布,其参数也反映了不同时间段的煤气平衡状况;日富余煤气量所具有的正自相关性一定程度上体现了需结合企业历史数据对其进行预测.该研究结果对改善煤气系统的平衡具有一定的参考价值,也是自备电厂煤气供入量预测的基础和关键.
参考文献
[1] | Abe S;Minematsu T .Instrumentation and control system at energy enter[J].Kawasaki Steel Giho,1986,18(02):71. |
[2] | Sawada T;Kawa T .Improvement in coke energy recovery efficiency at blast furnace process[J].Kawasaki Steel Giho,1986,18(02):18. |
[3] | 张琦,蔡九菊,杜涛,刘汉桥,张立宏.钢铁企业煤气平衡问题的探讨[J].节能,2004(12):9-11. |
[4] | 孙贻公.对大型钢铁联合企业煤气平衡问题的探讨[J].钢铁,2003(06):59-61,69. |
[5] | 韩明荣.优化煤气系统动态平衡[J].钢铁,2001(04):5-7,16. |
[6] | Akimoto K;Sannomiya N;Nishikawa Y et al.An optimal gas supply for a power plant using a mixed integer programming model[J].Automatica,1991,27(03):513. |
[7] | Kim J H;Yi H S;Han C .A novel MILP model for plantwide multi-period optimization of byproduct gas supply system in the iron-and steel-market process[J].Transactions of the Institution of Chem Eng,2003,81(09):1015. |
[8] | Thomas F;Barnhart.Energy requirements for various steelmaking processes[A].AIME Annual Meet.104th.New York,USA,1975:41. |
[9] | Y. Sakamoto;Y. Tonooka;Y. Yanagisawa .Estimation of energy consumption for each process in the Japanese steel industry: a process analysis[J].Energy Conversion & Management,1999(11):1129-1140. |
[10] | Mikael Larsson;Peter Sandberg;Jan Dahl .System gains from widening the system boundaries: analysis of the material and energy balance during renovation of a coke oven battery[J].International journal of energy research,2004(12):1051-1064. |
[11] | 张琦,提威,杜涛,蔡九菊.钢铁企业富余煤气-蒸汽-电力耦合模型及其应用[J].化工学报,2011(03):753-758. |
[12] | 孙祝岭.概率统计[M].上海:上海交通大学出版社,2003 |
[13] | 于润伟.MATLAB基础及应用[M].北京:机械工业出版社,2003 |
[14] | 张树京;齐立心.时间序列分析简明教程[M].北京:北方交通大学出版社,2003 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%