以分析纯Al2O3和MoO3为原料,采用固相法制备出负热膨胀材料Al2Mo3O12陶瓷.利用X射线衍射仪(XRD)、场发射扫描电子显微镜(FE-SEM)和高分辨透射电子显微镜(HR-TEM)对样品的成分、断面形貌和微观结构进行分析;利用变温拉曼光谱仪、差示扫描量热仪( DSC)和热机械分析仪(TMA)对样品的相变温度和热膨胀特性进行分析.实验结果表明:在750℃烧结12h产物为纯度较高的单斜相Al2Mo3O12陶瓷,其断面的晶粒呈不规则的多边形、排列致密,晶粒均匀、大小约为30 μm;相变点为202℃,低频声子模和高频光学声子模对负热膨胀都有贡献.在230 ~ 700℃其平均热膨胀系数为-1.918×10-6/C,700 ~ 900℃的平均热膨胀系数为-4.6×10-/C.
参考文献
[1] | Stinton GW;Hampson MR;Evans JSO .The 136-atom structure of ZrP2O7 and HfP2O7 from powder diffraction data[J].Inorganic Chemistry: A Research Journal that Includes Bioinorganic, Catalytic, Organometallic, Solid-State, and Synthetic Chemistry and Reaction Dynamics,2006(11):4352-4358. |
[2] | Evans JSO;Jorgensen JD;Short S .Compressibility, Phase Transitions, and Oxygen Migration in Zirconium Tungstate, ZrW2O8[J].Science,1997(5296):61-65. |
[3] | 柳宁,李刚,李锦州.负热膨胀材料ZrW2O8制备方法的研究进展[J].硅酸盐通报,2008(06):1185-1189. |
[4] | Yuan C;Liang Y;Liang E J .Terahertz time-domain spectroscopy and optical properties of AM2O8 (A =Zr,Hf and M =W,Mo)[J].Journal of Quantitative Spectroscopy & Radiative Transfer,2009,110:384-388. |
[5] | 刘燕燕,翟萍,李伶,韦其红,闫法强,刘俊成.ZrW2O8负膨胀材料高温稳定性研究[J].硅酸盐通报,2010(06):1394-1396,1406. |
[6] | Liang EJ;Huo HL;Wang JP;Chao MJ .Effect of water species on the phonon modes in orthorhombic Y-2(MoO4)(3) revealed by Raman spectroscopy[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2008(16):6577-6581. |
[7] | Sumithra S;Umarji A M .Role of crystal structure on the thermal expansion of Ln2 W3O12 (Ln =La,Nd,Dy,Y,Er and Yb)[J].Solid State Sciences,2004,6:1313-1319. |
[8] | John S. O. Evans;T. A. Mary .Structural phase transitions and negative thermal expansion in Sc_2 (MoO_4)_3[J].International journal of inorganic materials,2000(1):143-151. |
[9] | Bojan A. Marinkovic;Monica An;Roberto R. de Avillez .Correlation between AO6 Polyhedral Distortion and Negative Thermal Expansion in Orthorhombic Y2Mo3O_(12) and Related Materials[J].Chemistry of Materials: A Publication of the American Chemistry Society,2009(13):2886-2894. |
[10] | 程晓农,刘红飞,张志萍,屈展.射频磁控溅射法制备Al2(WO4)3薄膜和负热膨胀性能研究[J].真空科学与技术学报,2008(03):252-255. |
[11] | 李军,刘芹芹,杨娟,程晓农,朱君君.A2(WO4)3(A∶Al,Y,Sc)粉体的制备及热膨胀性能[J].硅酸盐学报,2011(05):739-742. |
[12] | 黄远辉,杨海涛,尚福亮.Y2W3O12和Yb2W3O12的制备及其负热膨胀性能[J].中国钨业,2008(05):26-29. |
[13] | Chang L L Y;Scroger M G;Philips B .Condensed phase relations in the systems ZrO2-WO2-WO3 and HfO2-WO2-WO3[J].Journal of the American Ceramic Society,1967,50:211-215. |
[14] | Evans J S O;Mary T A;Sleight A W .Negative thermal expansion in a large molybdate and tungstate family[J].Solid-state chemistry,1997,133:580-583. |
[15] | A.K. Tyagi;S.N. Achary;M.D. Mathews .Phase transition and negative thermal expansion in A_2(MoO_4)_3 system (A=Fe~(3+), Cr~(3+) and Al~(3+))[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2002(1/2):207-210. |
[16] | 刘丹,陈晓辉,类伟巍,刘然,崔启良,邹广田.In2(MoO4)3晶体的高压拉曼振动研究[J].原子与分子物理学报,2009(04):741-744. |
[17] | 袁超,梁源,王俊平,梁二军.负热膨胀材料钨酸钇的快速合成及其Raman光谱[J].硅酸盐学报,2009(05):728-732. |
[18] | 沈容,白海龙.Al2-xYxW3O12的合成与热膨胀特性的研究[J].材料科学与工艺,2004(05):492-496. |
[19] | Pryde A K A;Hannnonds K D;Dove M T et al.Rigid unit modes and the negative thermal expansion in ZrW2O8[J].Phas Trans,1997,61:141-143. |
[20] | Ymmamura Y;Nakjima N;Tsuji T .Heat capacity anomaly due to the a-to-β structural phase transition in ZrW2O8[J].Solid State Communications,2000,114:453-455. |
[21] | Cao D.;Bridges F.;Kowach GR.;Ramirez AP. .Frustrated soft modes and negative thermal expansion in ZrW2O8 - art. no. 215902[J].Physical review letters,2002(21):5902-0. |
[22] | U. Kameswari;A. W. Sleight;J. S. O. Evans .Rapid synthesis of ZrW_2O_8 and related phases, and structure refinement of ZrWMoO_8[J].International journal of inorganic materials,2000(4):333-337. |
[23] | 华祝元,刘佳琪,严学华.负热膨胀系数材料的研究现状与展望[J].硅酸盐通报,2010(05):1086-1092,1102. |
[24] | 尚福亮,杨海涛,黄远辉.稀土钨酸盐负热膨胀材料研究进展[J].中国钨业,2008(02):29-32. |
[25] | 王俊平,陈庆东,梁二军.新型负热膨胀材料的研究[J].材料导报,2010(z1):325-329. |
[26] | 谭强强,张中太,方克明.复合氧化物负热膨胀材料研究进展[J].功能材料,2003(04):353-356. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%