欢迎登录材料期刊网

材料期刊网

高级检索

利用Gleeble-1500热力模拟试验机,在温度为650~950℃、应变速率为0.01~5 s-1、总应变量0.7的条件下,对W-50%Cu复合材料高温塑性变形过程中的动态再结晶行为及其热加工图进行了研究和分析。试验结果表明:W-50%Cu复合材料高温流动应力-应变曲线主要以动态回复和动态再结晶软化机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加;在真应力-应变曲线基础上,建立的W-50%Cu复合材料高温变形本构模型较好地表征了其高温流变特性;同时,利用W-50%Cu复合材料DMM加工图分析了其变形机制和失稳机制,可确定其热加工工艺优先选择变形温度650~700℃、应变速率1~5 s-1或变形温度850~950℃、应变速率0.01~0.1 s-1。

Using a Gleeble-1500 simulator,the dynamic recrystallization behavior during high-temperature plastic deformation and processing maps of W-50%Cu composite were investigated at 650-950 ℃ with the strain rate of 0.01-5 s-1 and total strain of 0.7.The results show that the high-temperature flow stress-strain curves of W-50%Cu composite are characterized by softening mechanism of dynamic recovery and dynamic recrystallization,and the peak stress increases with decreasing deformation temperature or increasing strain rate.Based on the true stress-strain curves,the established constitutive equation represents the high-temperature flow behavior of W-50%Cu composite,and the calculated results of the flow stress are in good agreement with the high-temperature deformation experimental results.Meanwhile,the obtained processing map of dynamic materials modeling(DMM) is used to analyze the deformation mechanism and the destabilization mechanism of W-50%Cu composite,the optimal deformation processing parameters of the deformation temperatures rang and the strain rates rang are 650-700 ℃ and 1-5 s-1 or 850-950 ℃ and 0.01-0.1 s-1.

参考文献

[1] Young Do Kim;Nang Lyeom Oh;Sung-Tag Oh .Thermal conductivity of W-Cu composites at various temperatures[J].Materials Letters,2001(5):420-424.
[2] 周武平,吕大铭.钨铜材料应用和生产的发展现状[J].粉末冶金材料科学与工程,2005(01):21-25.
[3] 杨明川,宋贞桢,卢柯.W-20%Cu纳米复合粉的制备[J].金属学报,2004(06):639-642.
[4] 黄树海,赵祖德,夏志新,蔡海艳,康凤,胡传凯,舒大禹.AZ80合金高温变形行为及加工图[J].稀有金属材料与工程,2010(05):848-852.
[5] 范永革,汪凌云.AZ31镁合金的中温流变失稳特征[J].中国有色金属学报,2005(10):1602-1606.
[6] Sellars C M;Mctegart W J .On the mechanism of hot deformation[J].Acta Metallurgica,1966,14:1136-1138.
[7] Zener C;Hollomon J H .Effect of strain-rate upon the plastic flow of steel[J].Journal of Applied Physics,1944,15(01):22-27.
[8] Rao K P;Doraivelu S M;Roshan H M et al.Deformation processing of an aluminum alloy containing particles:Studies on AI-5 Pct Si alloy 4043[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1983,14(08):1671-1679.
[9] Prasad Y V R K;Gegel H L;Doraivelu S M et al.Modeling of dynamic material behavior in hot deformation:Forging of Ti-6242[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1984,15(10):1883-1892.
[10] Prasad Y V R K;Sasidhara S.Hot Working Guide:A Compendium of Processing Maps[M].Materials Park,OH:ASM International,1997
[11] 鞠泉,李殿国,刘国权.15Cr-25Ni-Fe基合金高温塑性变形行为的加工图[J].金属学报,2006(02):218-224.
[12] 厉勇,王春旭,刘宪民,田志凌,傅万堂.Fe-14Co-10Ni合金的高温塑性变形及热加工图[J].材料热处理学报,2009(06):84-88.
[13] 孟刚,李伯龙,黄晖,李红梅,聂祚仁.Al-4.7Mg-0.7Mn-0.1Zr-0.4Er合金高温变形行为[J].材料热处理学报,2010(02):95-99.
[14] Ziegler H.Progress in Solid Mechanics[M].New York:wiley Press,1963
[15] 曾卫东,周义刚,周军,俞汉清,张学敏,徐斌.加工图理论研究进展[J].稀有金属材料与工程,2006(05):673-677.
[16] 王艳,王明家,蔡大勇,熊良银,王青峰.高强度奥氏体不锈钢的热变形行为及其热加工图[J].材料热处理学报,2005(04):65-68.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%