欢迎登录材料期刊网

材料期刊网

高级检索

利用超声疲劳低-高应力两步变幅加载技术研究了JIS SUJ2高强轴承钢疲劳断口上GBF(granular bright facet)内裂纹萌生与扩展规律.结果表明,随外加应力幅增加GBF尺寸减小,固定应力幅下的GBF尺寸为恒定值,与夹杂物尺寸无关;且在固定应力幅下,Nf∝√Ainc-8,疲劳寿命Nf随着夹杂物尺寸的增加而降低.研究表明,GBF形成于疲劳初期(在105周次左右,相应于小于1%的总寿命),随循环周次的增加,GBF尺寸基本不增加,直至接近最终疲劳寿命时(超过90%总寿命)GBF裂纹快速扩展直到最终尺寸.

参考文献

[1] 李守新;翁宇庆;惠卫军.高强度钢超高周疲劳性能-非金属夹杂物的影响[M].北京:冶金工业出版社,2010:1-6.
[2] 洪友士,赵爱国,钱桂安.合金材料超高周疲劳行为的基本特征和影响因素[J].金属学报,2009(07):769-780.
[3] 周承恩,洪友士.GCr15钢超高周疲劳行为的实验研究[J].机械强度,2004(z1):157-160.
[4] 李伟,李强,鲁连涛,王平.不同加载频率下GCr15钢超高周疲劳行为的研究[J].材料热处理学报,2008(06):53-57.
[5] 闫桂玲,王弘,高庆.热处理工艺对50钢超高周疲劳性能的影响[J].材料热处理学报,2007(02):81-84.
[6] 王清远,刘永杰.结构金属材料超高周疲劳破坏行为[J].固体力学学报,2010(05):496-503.
[7] 鲁连涛,张卫华.金属材料超高周疲劳研究综述[J].机械强度,2005(03):388-394.
[8] Murakami Y;Nomoto T;Ueda T et al.On the mechanism of fatigue failure in the superlong life regime (Nf》107 cycles).Part Ⅰ:influence of hydrogen trapped by inclusions[J].Fatigue and Fracture Engineering Materials and Structrues,2000,23(11):893-902.
[9] Murakami Y;Nomoto T;Ueda T et al.On the mechanism of fatigue failure in the superlong life regime (Nf》107 cycles).Part Ⅱ:a fractographic investigation[J].Fatigue and Fracture Engineering Materials and Structrues,2000,23(11):903-910.
[10] K. SHIOZAWA;L. LU;S. ISHIHARA .S-N curve characteristics and subsurface crack initiation behaviour in ultra-long life fatigue of a high carbon-chromium bearing steel[J].Fatigue & Fracture of Engineering Materials and Structures,2001(12):781-790.
[11] Chapetti MD.;Tagawa T.;Miyata T. .Ultra-long cycle fatigue of high-strength carbon steels part I: review and analysis of the mechanism of failure[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):227-235.
[12] Chapetti M D;Tagawa T;Miyata T .Ultra-long cycle fatigue of high-strength carbon steels part Ⅱ:estimation of fatigue limit for failure from internal inclusions[J].Materials Science and Engineering A,2003,356(1-2):236-244.
[13] Li, YD;Chen, SM;Liu, YB;Yang, ZG;Li, SX;Hui, WJ;Weng, YQ .The characteristics of granular-bright facet in hydrogen pre-charged and uncharged high strength steels in the very high cycle fatigue regime[J].Journal of Materials Science,2010(3):831-841.
[14] Yukitaka MURAKAMI;Hiroshi KONISHI .Acceleration of Superlong Fatigue Failure by Hydrogen Trapped by Inclusions and Elimination of Conventional Fatigue Limit[J].鉄と鋼,2000(11):777-783.
[15] 聂义宏,惠卫军,傅万堂,翁宇庆,董瀚.中碳高强度弹簧钢NHS1超高周疲劳破坏行为[J].金属学报,2007(10):1031-1036.
[16] Y.B. Liu;Z.G. Yang;Y.D. Li;S.M. Chen;S.X. Li;W.J. Hui;Y.Q.Weng .On the formation of GBF of high-strength steels in the very high cycle fatigue regime[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2008(1/2):408-415.
[17] M. Nakajima;N. Kamiya;H. Itoga .Experimental estimation of crack initiation lives and fatigue limit in subsurface fracture of a high carbon chromium steel[J].International Journal of Fatigue,2006(11):1540-1546.
[18] 鲁连涛,盐泽和章,森井佑一,西野精一.高碳铬轴承钢超长寿命疲劳破坏过程的研究[J].金属学报,2005(10):1066-1072.
[19] Chang-Min Suh;Jong-Hyoung Kim .Fatigue characteristics of bearing steel in very high cycle fatigue[J].Journal of Mechanical Science and Technology,2009(2):420-425.
[20] Murakami Y.Metal Fatigue:Effects of Small Defects and Nonmetallic Inclusions[M].Amsterdam & Boston:Elsevier,2002:273-303.
[21] 李永德 .高强钢的超高周疲劳性能研究及氢对疲劳性能的影响[D].中国科学院研究生院,2009.
[22] 柳洋波 .夹杂物和贝氏体对高强钢的超高周疲劳性能的影响[D].中国科学院研究生院,2011.
[23] Z. G. Yang;S. X. Li;Y. B. Liu;Y. D. Li;G. Y. Li;W. J. Hui;Y. Q. Weng .Estimation of the size of GBF area on fracture surface for high strength steels in very high cycle fatigue regime[J].International Journal of Fatigue,2008(6):1016-1023.
[24] Liu, Y.B.;Li, S.X.;Li, Y.D.;Yang, Z.G. .Factors influencing the GBF size of high strength steels in the very high cycle fatigue regime[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2011(3):935-942.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%