The effects of applied tensile strain on the coherent α2 →O-phase transformation in Ti-Al-Nb alloys are explored by computer simulation using a phase-field method. The focus is on the influence of the applied strain direction on the microstructure and volume fraction of the O-phase precipitates. It is found that altering applied strain direction can modify microstructure of Ti-25Al-10~12Nb (at.~pct) alloy duringα2 →O-phase transformation effectively and full laminate microstructure in the Ti-25Al-10Nb (at. pct) alloy can be realized by an applied strain only along the direction 30° away from theα2 phase <10 0> in magnitude equivalent to the stress-free transformation strain. The simulation also shows that not only the magnitude of applied strain but also the applied strain direction influences the O-phase volume fraction and the effect of strain direction on the volume fraction is up to 25%.
参考文献
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%