研究了质子交换膜燃料电池(Proton exchange membranefuel cell,PEMFC)中气体扩散层表面微观结构对液态水在气体通道中运动过程的影响;考虑了三种微观结构:碳纤维交叉分布,碳纤维平行于流动方向分布以及碳纤维垂直于流动方向分布。模拟结果表明碳纤维平行于流动方向分布有利于液滴的排出。研究了空气进口速度以及气体扩散层润湿特性对液滴脱落时间的影响。进口速度越大,气体扩散层接触角越大,液滴脱落时间越短,脱落直径小。
Liquid water dynamic behaviors in gas channel (GC) with different surface microstructures of gas diffusion layer (GDL) are investigated and effects of air inlet velocity and GDL contact angle on liquid water removal time and detachment size are explored. In the simulation, three types of GDL surface microstructures are considered including crisscross distributions of carbon fibers, parallel distributions of carbon fibers (parallel to the flow direction) and orthogonal distributions of carbon fibers (orthogonal to the flow direction). Simulation results show that microstructures of GDL surface greatly affects liquid water behaviors and GDL surface with parallel distributions of carbon fibers leads to the smallest water droplet detachment size and shortest removal time, followed by GDL surface with crisscross distributions of carbon fibers and finally that with orthogonal distributions of carbon fibers. Besides, it is found that liquid water detachment time and detachment size decreases as air inlet velocity increases and GDL contact angle increases.
参考文献
[1] | Zhang FY;Yang XG;Wang CY .Liquid water removal from a polymer electrolyte fuel cell[J].Journal of the Electrochemical Society,2006(2):A225-A232. |
[2] | Y.H. Cai;J. Hu;H.P. Ma .Effects of hydrophilic/hydrophobic properties on the water behavior in the micro-channels of a proton exchange membrane fuel cell[J].Journal of Power Sources,2006(2):843-848. |
[3] | 陈黎,栾辉宝,陶文铨.PEMFC中粗糙GDL表面对液态水在GC中传输过程的影响[J].化工学报,2011(03):643-651. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%