欢迎登录材料期刊网

材料期刊网

高级检索

利用膨化石墨原位气相沉积制备多层石墨烯/碳纳米管复合粉体。以膨胀石墨为基体,以硝酸铁、碳酸铵等物质对其进行修饰,结合化学气相沉积工艺,原位制备出多层石墨烯/碳纳米管复合粉体材料;探讨不同的修饰液相对复合粉体比例,微观形貌及分散性的影响。利用扫描电镜对复合粉体进行表征。结果表明:多层石墨烯/碳纳米管复合粉体材料可批量制备;其中多层石墨烯为透明薄片,其厚度为10~30 nm;通过控制工艺参数,可以实现多层石墨烯的质量比为15%~50%;复合粉体中碳纳米管的分散性明显优于一般化学气相沉积方法制备的碳纳米管;加入质量分数5%复合粉体的聚对苯二甲酸丁二醇酯( PBT)的表面电阻显著降低。

Expanded graphite ( EG) was loaded with iron by impregnating with ammonium carbonate and ferric nitrate solution. Carbon nanotubes ( CNTs) were grown on the EG by iron-catalyzed chemical vapor deposition, using acetylene as a carbon source to form hybrids that were used as a conductive filler to produce conducting polybutylene terephthalate ( PBT) composites by an ex-trusion method. It is found that the CNTs are not entangled and are easy to disperse. The CNT average diameters are 40, 20 and 40 nm, and their lengths are 2, 3. 7 and 2. 6μm for iron loadings of 1. 13, 0. 75 and 0. 57 mass%, respectively. The thickness of the EG is reduced to 10-30 nm as a result of CNT insertion into the graphene layers of the EG. The content of CNTs in the hybrids in-creases from 50 to 85 mass% with the increasing iron content. The conductive PBT modified by the hybrids ( 5 mass%) derived from EG loaded with 0. 75 mass% iron has a surface resistance of 1. 55í104Ω/cm2 , significantly lower than that ( 1. 55í1 010Ω/cm2 ) of the PBT modified by CNTs with the same amount of filler added.

参考文献

[1] Stoller MD;Park SJ;Zhu YW;An JH;Ruoff RS .Graphene-Based Ultracapacitors[J].Nano letters,2008(10):3498-3502.
[2] Balandin AA;Ghosh S;Bao WZ;Calizo I;Teweldebrhan D;Miao F;Lau CN .Superior thermal conductivity of single-layer graphene[J].Nano letters,2008(3):902-907.
[3] Changgu Lee;Xiaoding Wei;Jeffrey W. Kysar;James Hone .Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene[J].Science,2008(5887):385-388.
[4] Bolotin, KI;Sikes, KJ;Jiang, Z;Klima, M;Fudenberg, G;Hone, J;Kim, P;Stormer, HL .Ultrahigh electron mobility in suspended graphene[J].Solid State Communications,2008(9/10):351-355.
[5] Zhang Y;Tan Y W;Stormer H L et al.Experimental observa-tion of thequantum Hall effect and Berry's phase in graphene[J].NATURE,2005,438:201-204.
[6] Reina A;Jia XT;Ho J;Nezich D;Son HB;Bulovic V;Dresselhaus MS;Kong J .Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition[J].Nano letters,2009(1):30-35.
[7] Keun Soo Kim;Yue Zhao;Houk Jang;Sang Yoon Lee;Jong Min Kim;Kwang S. Kim;Jong-Hyun Ann;Philip Kim;Jae-Young Choi;Byung Hee Hong .Large-scale Pattern Growth Of Graphene Films For Stretchable Transparent Electrodes[J].Nature,2009(7230):706-710.
[8] Shin H J;Kim K K;Benayad A et al.Efficient reduction of graphite oxide by sodium borohydride and Its effect on electrical conductance[J].Advanced Functional Materials,2009,19:1987-1992.
[9] Tung, VC;Allen, MJ;Yang, Y;Kaner, RB .High-throughput solution processing of large-scale graphene[J].Nature nanotechnology,2009(1):25-29.
[10] Hernandez Y;Nicolosi V;Lotya M;Blighe FM;Sun ZY;De S;McGovern IT;Holland B;Byrne M;Gun'ko YK .High-yield production of graphene by liquid-phase exfoliation of graphite[J].Nature nanotechnology,2008(9):563-568.
[11] Hamilton, CE;Lomeda, JR;Sun, ZZ;Tour, JM;Barron, AR .High-Yield Organic Dispersions of Unfunctionalized Graphene[J].Nano letters,2009(10):3460-3462.
[12] Choucair, M;Thordarson, P;Stride, JA .Gram-scale production of graphene based on solvothermal synthesis and sonication[J].Nature nanotechnology,2009(1):30-33.
[13] Wang, HL;Robinson, JT;Li, XL;Dai, HJ .Solvothermal Reduction of Chemically Exfoliated Graphene Sheets[J].Journal of the American Chemical Society,2009(29):9910-9911.
[14] Wang, Shiren;Tambraparni, Madhava;Qiu, Jingjing;Tipton, John;Dean, Derrick .Thermal Expansion of Graphene Composites[J].Macromolecules,2009(14):5251-5255.
[15] Cote, LJ;Cruz-Silva, R;Huang, JX .Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite[J].Journal of the American Chemical Society,2009(31):11027-11032.
[16] 闰家林,陈贵娇,曹君,杨伟,谢邦互,杨鸣波.乙二胺和己二胺氨基功能化氧化石墨烯[J].新型炭材料,2012(05):370-376.
[17] 成会明.纳米碳管制备、结构、物性及应用[M].北京:化学工业出版社,2002:1-11.
[18] Ebbesen T W;Ajayan P M .Large-scale synthesis of carbon nanotube[J].NATURE,1992,358(6383):220-222.
[19] 李永锋,刘燕珍,杨永岗,王茂章,温月芳.多壁碳纳米管-还原氧化石墨烯杂化薄膜导电性能的调控[J].新型炭材料,2012(02):117-122.
[20] 丁翔,黄正宏,沈万慈,康飞宇.氧化铜/石墨烯的制备及其电化学性能[J].新型炭材料,2013(03):172-177.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%