材料科学与工艺, 2014, 22(1): 30-35.
电子束端面熔炼法制备高纯钨的研究
马运柱 1, , 刘业 2, , 刘文胜 李佳","id":"0be38e3f-9d70-4307-9e5f-58f1bd8e750a","originalAuthorName":"李佳"},{"authorName":"黄善清","id":"e1bc2648-7e0f-4a31-a467-167ff6d491c7","originalAuthorName":"黄善清"},{"authorName":"李贵","id":"8b00d15e-37f8-401f-b218-0e9dd0984f9f","originalAuthorName":"李贵"},{"authorName":"宋钢","id":"4bf5f314-223d-4a56-bacf-22a25c6146b5","originalAuthorName":"宋钢"},{"authorName":"汪卫华","id":"ed5d807b-1735-4c84-9c43-967476924d72","originalAuthorName":"汪卫华"},{"authorName":"吴宜灿","id":"84ae1d42-ade3-4b68-b846-a93e5053f191","originalAuthorName":"吴宜灿"},{"authorName":"FDS团队","id":"679e79b8-5a02-438e-be56-3ccabb4c2845","originalAuthorName":"FDS团队"}],"doi":"","fpage":"103","id":"9e81184c-77cb-4fd3-a75e-2aab609b3eaf","issue":"1","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"9d86948b-ee37-4385-8dc0-d75ec475aeb6","keyword":"调强放疗","originalKeyword":"调强放疗"},{"id":"542c4c1d-55aa-442d-bc86-9bc0410f490e","keyword":"共轭梯度法","originalKeyword":"共轭梯度法"},{"id":"8138e813-6293-48b4-9510-43925c790146","keyword":"精确放疗系统","originalKeyword":"精确放疗系统"},{"id":"d1e50397-d152-4764-89e5-9f153386e736","keyword":"子野权重优化","originalKeyword":"子野权重优化"}],"language":"zh","publisherId":"yzhwlpl201101016","title":"调强放射治疗子野权重优化方法研究","volume":"28","year":"2011"},{"abstractinfo":"以非离子型表面活性剂 Brij-35为稳定剂,以水为溶剂,在常温、常压条件下利用抗坏血酸还原 K2PtCl4制备了 Pt 纳米催化剂,采用透射电子显微镜、能量弥散 X 射线谱、X 射线粉末衍射、热重及循环伏安扫描对催化剂进行了表征.结果表明,所制 Pt 纳米催化剂为尺寸均一的球形分枝结构,平均粒径为36.9 nm,其中每一个 Pt 分枝的直径为2~4 nm,长度为4~6 nm.为去除表面活性剂 Brij-35和副产物,开发了一种简单的多次水洗法以纯化所制 Pt 纳米催化剂.表征结果证明,该法可有效去除表面活性剂和副产物,所得催化剂纯度与商业 Pt 黑(99.9%)相当,且电化学活性比表面积更高,在氧还原反应和甲醇氧化反应中表现出更高的电催化活性.","authors":[{"authorName":"司维峰","id":"507a4ce4-d1a3-44aa-a191-4c7315be018b","originalAuthorName":"司维峰"},{"authorName":"李焕巧","id":"4c7eaf59-83ea-4aef-8de8-3e5f5f33bc05","originalAuthorName":"李焕巧"},{"authorName":"尹杰","id":"c51a97b5-6c08-4827-b891-d4774a3e2372","originalAuthorName":"尹杰"},{"authorName":"李书双","id":"616abd95-100c-480e-aa1a-bf41cc84016f","originalAuthorName":"李书双"},{"authorName":"谢妍","id":"60533e91-9a08-44ab-afe9-a5878c5c017f","originalAuthorName":"谢妍"},{"authorName":"李佳","id":"80457978-a0da-4b87-bc7b-d47aca5d9f35","originalAuthorName":"李佳"},{"authorName":"吕洋","id":"56904e39-ad73-4062-8d2a-db3d294387ba","originalAuthorName":"吕洋"},{"authorName":"刘元","id":"f17db971-d892-469e-b8fa-e3080cca2006","originalAuthorName":"刘元"},{"authorName":"邢永恒","id":"b83583be-0e3a-41d1-ba59-182cca7fdfdc","originalAuthorName":"邢永恒"},{"authorName":"徐缓","id":"322a59a4-0aef-4b46-8411-b19c713bb4e9","originalAuthorName":"徐缓"},{"authorName":"宋玉江","id":"0e4aeb9e-12b6-458f-9c12-ac76c0eb0df9","originalAuthorName":"宋玉江"}],"doi":"10.3724/SP.J.1088.2012.20431","fpage":"1601","id":"c919a0fa-43da-4ded-bd5d-381acbf17f1e","issue":"9","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"51ecf5b9-1019-4be5-bcaa-addb957c1c25","keyword":"球形分枝结构","originalKeyword":"球形分枝结构"},{"id":"9e1de042-2188-4a90-8c74-f49e203bdb29","keyword":"电催化活性","originalKeyword":"电催化活性"},{"id":"df256440-9f06-4803-a98f-aeb96fafc8f7","keyword":"表面活性剂","originalKeyword":"表面活性剂"},{"id":"c5d8c1d8-3ddd-4a17-bc74-2d517dbc36d5","keyword":"铂纳米催化剂","originalKeyword":"铂纳米催化剂"},{"id":"5950961f-68f4-4b1e-be84-e6b51feaba15","keyword":"氧还原","originalKeyword":"氧还原"},{"id":"a7c47fa6-ff54-43ad-8c44-62d8f59fd2af","keyword":"甲醇氧化","originalKeyword":"甲醇氧化"}],"language":"zh","publisherId":"cuihuaxb201209025","title":"球形分枝结构Pt纳米催化剂的合成、纯化及电催化性能","volume":"","year":"2012"},{"abstractinfo":"TiC-WC是一种重要的复式碳化物,原料粉末颗粒的大小对材料的性能有重要影响.以TiCl4、AMT、Ni(NO3)2为主要原料,采用溶胶-凝胶工艺制得纳米氧化物复合粉末,再经直接还原碳化合成了TiC-WC-Ni超细粉末,研究了碳化温度对反应的影响.结果表明,用该方法可以在1580℃碳化2h制备出粒径为0.2~0.3μm的超细TiC-WC-Ni粉末,其制备温度比传统碳化温度低100℃以上.","authors":[{"authorName":"易忠来","id":"1e29dc60-3055-4631-8b59-52e5963b41fe","originalAuthorName":"易忠来"},{"authorName":"邵刚勤","id":"19e2ff16-0a8f-4b3a-b02a-adfeea9a4c9c","originalAuthorName":"邵刚勤"},{"authorName":"李佳","id":"69d52a9a-3ea1-404f-95ce-7f2e77ea37ba","originalAuthorName":"李佳"},{"authorName":"张卫丰","id":"e60aad75-7dc6-42e6-ad85-a2f300931279","originalAuthorName":"张卫丰"},{"authorName":"王冲","id":"7b1bb47c-142b-4daa-9a3f-191d8a54be61","originalAuthorName":"王冲"},{"authorName":"段兴龙","id":"28a5e7a2-1744-4e2a-bba1-6b0b9e883231","originalAuthorName":"段兴龙"},{"authorName":"林华幌","id":"2209f7fa-b92f-434a-808f-a8906bed62cb","originalAuthorName":"林华幌"},{"authorName":"郭景坤","id":"e7ec4695-3ed3-445c-9241-ba4a28f0e6c6","originalAuthorName":"郭景坤"}],"doi":"","fpage":"163","id":"7b807d0e-fd46-4858-92d9-8a1ff8f94111","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"a9d9b715-8e27-4fb4-a855-1cf813c682a2","keyword":"TiC-WC-Ni","originalKeyword":"TiC-WC-Ni"},{"id":"d42b22ef-e074-428f-b4bd-aec26240f509","keyword":"溶胶-凝胶","originalKeyword":"溶胶-凝胶"},{"id":"3555702d-bdde-41a5-a0af-7c661724f94d","keyword":"超细粉末","originalKeyword":"超细粉末"},{"id":"98d3032f-d542-4e67-bfe9-0920d7691698","keyword":"直接还原碳化","originalKeyword":"直接还原碳化"}],"language":"zh","publisherId":"cldb2004z1057","title":"直接还原碳化法制备TiC-WC-Ni超细粉末","volume":"18","year":"2004"},{"abstractinfo":"利用FIB/SEM切片、XRD、TEM和EDX、EELS等先进分析技术对微球模板法所制备的Au/Ag泡沫材料的微观结构、形貌、成分及成分分布等进行了细致的研究.结果表明:由微球状Au/Ag球壳堆积而成的泡沫材料中微球直径约8 μm,微球壁厚200~1200 nm; Au/Ag泡沫材料的球壳可细分为3层,内层和外层为Au/Ag合金的微粒,中间主要是非晶碳层,夹杂有少量的Au/Ag微粒;Au/Ag泡沫材料的骨架由单个空心球壳组成,球壳之间通过接触点的金属镀层连接在一起;球壳上有小孔状结构,是在热分解法去除聚苯乙烯微球模板对形成的;球壳壁厚分布不均匀,少数球壳有塌陷、变形、破裂等现象.这些详细的分析有助于改进工艺,提高Au/Ag泡沫材料的制备质量.","authors":[{"authorName":"张继成","id":"b11acbf4-82b3-41bf-bbc2-48006a1b6996","originalAuthorName":"张继成"},{"authorName":"谭秀兰","id":"3ec940e1-1fe5-4489-b56c-96dc0fee5f51","originalAuthorName":"谭秀兰"},{"authorName":"周民杰","id":"4f89e571-eb72-4e7e-9997-4b754808e32e","originalAuthorName":"周民杰"},{"authorName":"韩尚君","id":"56ffc5a2-8491-4385-8bd3-4df27f6d867f","originalAuthorName":"韩尚君"},{"authorName":"李佳","id":"d8ec5b3e-e920-41e7-9bd6-239c8add5a0d","originalAuthorName":"李佳"},{"authorName":"罗江山","id":"e03dff5e-ae5d-47c3-a86d-051ee030db15","originalAuthorName":"罗江山"},{"authorName":"吴卫东","id":"10ddae3a-95c7-4296-ab7b-c5fc777198c7","originalAuthorName":"吴卫东"},{"authorName":"唐永建","id":"ebf78f53-347e-4dfc-97b1-30699746d897","originalAuthorName":"唐永建"}],"doi":"","fpage":"1664","id":"9bb2194b-6041-465a-9486-ffcac2ae524c","issue":"8","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"c932e367-1ed1-4faa-accf-9a0ee9624e0c","keyword":"AuAg泡沫材料","originalKeyword":"AuAg泡沫材料"},{"id":"c1c13fa5-c61d-4eca-8f6f-fb49d8312586","keyword":"微结构表征","originalKeyword":"微结构表征"},{"id":"310de998-8e90-43d6-9bec-d3b8d6f7433d","keyword":"TEM/EELS","originalKeyword":"TEM/EELS"},{"id":"1f725a8d-8fba-4aa3-800c-e0e63eb8e8c6","keyword":"FIB/SEM断层成像","originalKeyword":"FIB/SEM断层成像"}],"language":"zh","publisherId":"xyjsclygc201308025","title":"基于FIB/SEM切片和TEM/EELS技术分析Au/Ag泡沫材料的微观结构","volume":"42","year":"2013"},{"abstractinfo":"均苯四甲酸二酐和二氨基二苯醚溶解在N,N-二甲基乙酰胺中,室温下聚合为聚酰胺酸。以聚酰胺酸溶液作为前驱体,在20 kV电压下静电纺丝,然后进行350℃热亚胺化处理可得到定向排列的聚酰亚胺纳米纤维,再于900℃炭化、3000℃石墨化,得到均匀连续、定向排列的聚酰亚胺基炭纳米纤维,纤维直径约100 nm。结果表明,聚酰胺酸质量分数为20%的溶液电纺性能最佳,3000℃石墨化处理后的炭纳米纤维具有典型的石墨结构。","authors":[{"authorName":"张振兴","id":"f83847d9-b4e5-466a-af92-e26f6578ab5b","originalAuthorName":"张振兴"},{"authorName":"杜鸿达","id":"f0680578-851e-413a-87b3-ea6e243ccfeb","originalAuthorName":"杜鸿达"},{"authorName":"李佳","id":"ddfae022-32fc-41d8-9c46-fd89602b1897","originalAuthorName":"李佳"},{"authorName":"干林","id":"cf4239c7-e149-466b-9b7f-d0c48391f43c","originalAuthorName":"干林"},{"authorName":"郑心纬","id":"67b7d78a-dfd3-4bcf-8623-4dfaec0fee7c","originalAuthorName":"郑心纬"},{"authorName":"李宝华","id":"7f00a2d1-6019-479f-95e0-f7c43737da9f","originalAuthorName":"李宝华"},{"authorName":"康飞宇","id":"d79d9542-9087-4bd1-89b5-b0481c7aa1de","originalAuthorName":"康飞宇"}],"doi":"","fpage":"289","id":"0e48bd8a-68ba-46be-857d-827337e83659","issue":"4","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"eff21b48-1728-4daa-ba72-a56a3ff3a370","keyword":"炭纳米纤维","originalKeyword":"炭纳米纤维"},{"id":"c9449fca-a9c7-4625-9c0a-d07b2f6576a6","keyword":"静电纺丝","originalKeyword":"静电纺丝"},{"id":"e8718648-0c09-4cdb-b6c1-3486abb3a5be","keyword":"定向排列","originalKeyword":"定向排列"}],"language":"zh","publisherId":"xxtcl201504001","title":"静电纺丝制备定向排列聚酰亚胺基炭纳米纤维","volume":"","year":"2015"},{"abstractinfo":"用共沉淀法制备了分布均匀的YSZ-Ni-Me金属陶瓷粉末,并用热压方法进行烧结,用XRD分析了粉末和烧结后块体的相组成,并用SEM观察了块体的形貌.","authors":[{"authorName":"李佳","id":"e41fd6c7-cf55-4f63-8712-89851d906081","originalAuthorName":"李佳"},{"authorName":"邵刚勤","id":"1eb7d47a-082f-4bc0-838b-f3ab91c4b61d","originalAuthorName":"邵刚勤"},{"authorName":"段兴龙","id":"6e7ed053-646f-4677-a22f-a503fd35ec1c","originalAuthorName":"段兴龙"},{"authorName":"谢济仁","id":"7de0048d-7b24-43c5-a511-5cc1089b8687","originalAuthorName":"谢济仁"},{"authorName":"张卫丰","id":"7b42ea6f-625c-4854-823d-35b7287d643c","originalAuthorName":"张卫丰"},{"authorName":"易忠来","id":"3be4ba99-d363-4532-b77e-c28398383cbc","originalAuthorName":"易忠来"},{"authorName":"林华幌","id":"9acbc454-4787-4717-9035-c43b0a3b8dbc","originalAuthorName":"林华幌"}],"doi":"","fpage":"309","id":"29e0bd3f-7f4e-4342-8861-3c8d2c479d44","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"7e44e4af-ccab-4834-a961-3c77859a1b01","keyword":"YSZ-Ni-Me","originalKeyword":"YSZ-Ni-Me"},{"id":"b40e6e3e-413c-469e-9861-6f92b6b6f3fd","keyword":"金属陶瓷粉末","originalKeyword":"金属陶瓷粉末"},{"id":"212e919e-9ec2-4f9f-98d8-9220f4ef0a9a","keyword":"共沉淀法","originalKeyword":"共沉淀法"}],"language":"zh","publisherId":"cldb2004z1106","title":"YSZ-Ni-Me金属陶瓷复合粉末及材料的制备","volume":"18","year":"2004"},{"abstractinfo":"提出非均匀指间距结构功率SiGe HBTs的版图设计用以改善热稳定性.模拟和实验结果均表明,与传统的均匀指间距结构相比,非均匀指间距结构HBT的峰值结温和温度分布非均匀性均得到显著改善.上述改善归功于非均匀指间距结构HBT中心指间距的增加,从而有效阻止热流由外侧指流向中心指处.此外,与均匀指间距结构器件相比,其热阻改善13.71%,热退化功率水平提高22.8%.因此,模拟和实验均证明采用非均匀指间距结构HBT的版图设计可有效改善功率HBTs热稳定性.","authors":[{"authorName":"金冬月","id":"6a8bd7e9-269c-460d-8684-5cf001ce8891","originalAuthorName":"金冬月"},{"authorName":"张万荣","id":"a43771a2-b611-42d8-b692-4d92237c5194","originalAuthorName":"张万荣"},{"authorName":"谢红云","id":"a8f34e58-4b50-4a6a-8993-da57033604fb","originalAuthorName":"谢红云"},{"authorName":"沈珮","id":"efe4222f-2c86-4e3c-bdfb-26822b7d6770","originalAuthorName":"沈珮"},{"authorName":"胡宁","id":"b0a20eaa-411f-4e34-9e60-93238e12eb68","originalAuthorName":"胡宁"},{"authorName":"甘军宁","id":"83ae1c48-f6de-4a2e-a5da-62b0ee6cae22","originalAuthorName":"甘军宁"},{"authorName":"李佳","id":"755d738c-f103-4112-b0e9-1eb28ee649c4","originalAuthorName":"李佳"}],"doi":"10.3969/j.issn.1007-4252.2009.05.017","fpage":"511","id":"4307c825-f11e-45a3-a9c4-fc969fb6dd01","issue":"5","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"aa047acf-ecd9-4211-8eee-292721fac40b","keyword":"SiGe","originalKeyword":"SiGe"},{"id":"645ca188-947c-4411-91c5-dccc58c051ae","keyword":"HBT","originalKeyword":"HBT"},{"id":"d9a3b44b-dc3f-432e-b1a3-012f98424b9c","keyword":"热稳定性","originalKeyword":"热稳定性"}],"language":"zh","publisherId":"gnclyqjxb200905017","title":"改善多指功率SiGe HBTs热稳定性的版图设计","volume":"15","year":"2009"},{"abstractinfo":"简要论述了替代ITO薄膜的几种新型透明导电薄膜材料的发展现状,重点介绍了金属网格透明导电薄膜的最新研究进展,包括金属网格透光物理机制的研究和不同方法制备高性能金属网格薄膜的最新研究成果.同时,分析了金属网格透明导电薄膜在光电器件,如太阳能电池、触控面板和OLED中的应用.","authors":[{"authorName":"齐亮飞","id":"e7ce3966-86fe-4aba-86ec-78d9c4395c98","originalAuthorName":"齐亮飞"},{"authorName":"朱超挺","id":"8f12c523-9555-44f2-85b2-8acaf24870bd","originalAuthorName":"朱超挺"},{"authorName":"杨晔","id":"7b2928e7-2031-454d-94f9-ee1502ac8e1b","originalAuthorName":"杨晔"},{"authorName":"黄金华","id":"f6151ac3-5542-40ec-8876-12d510af325d","originalAuthorName":"黄金华"},{"authorName":"李佳","id":"692fda95-e0a7-43cd-a29b-4a157bf77169","originalAuthorName":"李佳"},{"authorName":"赵世金","id":"faee466f-1b34-4fa4-bd50-443964269fde","originalAuthorName":"赵世金"},{"authorName":"宋伟杰","id":"9a15b2e8-92ce-4910-8d68-d9ee7ad72a6f","originalAuthorName":"宋伟杰"}],"doi":"10.11896/j.issn.1005-023X.2015.017.006","fpage":"31","id":"e74d324e-0ff9-4be0-9b3c-916ede99efb6","issue":"17","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"7800e4de-8ed5-4637-a8a8-5055a3988a7a","keyword":"透明导电薄膜","originalKeyword":"透明导电薄膜"},{"id":"9f477121-f0fd-4199-883d-7035c85c4c45","keyword":"金属网格","originalKeyword":"金属网格"},{"id":"1d7bc342-627a-4bbe-a2b9-3d5f0a41a058","keyword":"方块电阻","originalKeyword":"方块电阻"},{"id":"fd614d5b-19f1-4622-922f-e58cbc26432c","keyword":"透过率","originalKeyword":"透过率"}],"language":"zh","publisherId":"cldb201517006","title":"金属网格透明导电薄膜研究现状与应用分析","volume":"29","year":"2015"},{"abstractinfo":"研究了WC-10Co纳米复合粉末的模压、挤压成型及冷等静压复压工艺.用SEM观察了生坯的显微结构.结果表明:运用本研究优化的模压、挤压工艺能生产出合格的棒坯;模压成型后的冷等静压处理工艺可以减少坯体孔隙度,提高其强度,但冷等静压处理工艺对挤压成型的坯体的后期效果并不明显.","authors":[{"authorName":"张卫丰","id":"485a578b-d266-43d1-9af1-124fad37b4e7","originalAuthorName":"张卫丰"},{"authorName":"邵刚勤","id":"da2a9cd0-c18d-4ec8-81a0-eff149f57f8d","originalAuthorName":"邵刚勤"},{"authorName":"易忠来","id":"91b03f5c-bafa-4c8a-9207-1a6af151503e","originalAuthorName":"易忠来"},{"authorName":"史晓亮","id":"440d0d3b-24ca-48f0-9e1f-7bac678d25ad","originalAuthorName":"史晓亮"},{"authorName":"李佳","id":"a5231f89-3327-4400-a754-57edfc14b1a6","originalAuthorName":"李佳"},{"authorName":"孙鹏","id":"f7de7d6d-c1ad-4f96-9ac3-7e5fd3534e77","originalAuthorName":"孙鹏"},{"authorName":"谢济仁","id":"810dc5ac-3257-4a54-ac59-6d3c4e389cd2","originalAuthorName":"谢济仁"}],"doi":"","fpage":"56","id":"f3f60a2d-ed14-45b4-9225-73c73b751903","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"0ee1ccd9-b3a0-4cce-b476-5941d33f78d4","keyword":"模压成型","originalKeyword":"模压成型"},{"id":"cdccb761-c05b-4313-a7ff-6dcc65e7a58e","keyword":"挤压成型","originalKeyword":"挤压成型"},{"id":"66935556-0b06-43f3-b537-dd6a0a8b7f1e","keyword":"硬质合金","originalKeyword":"硬质合金"},{"id":"7873e202-4d77-4712-86ba-ff465fb45003","keyword":"棒材","originalKeyword":"棒材"}],"language":"zh","publisherId":"cldb2004z1019","title":"WC-10Co纳米复合粉末棒材的成型工艺研究","volume":"18","year":"2004"},{"abstractinfo":"","authors":[{"authorName":"白杨芝","id":"9d86060e-a910-4b8b-8a43-fafa2da21725","originalAuthorName":"白杨芝"},{"authorName":"衣宝廉","id":"3ead8dc5-0b8e-4ba1-b8a2-d379acd62291","originalAuthorName":"衣宝廉"},{"authorName":"李佳","id":"432103ef-1ed1-4199-bc2d-42ac12de5cf1","originalAuthorName":"李佳"},{"authorName":"蒋尚峰","id":"c6cdce6f-b649-4d37-9efa-56292b0cc378","originalAuthorName":"蒋尚峰"},{"authorName":"张洪杰","id":"5549c77d-64ab-4c17-8736-ff7acbb78d25","originalAuthorName":"张洪杰"},{"authorName":"邵志刚","id":"476b1173-9118-4d30-8192-19af71f10d03","originalAuthorName":"邵志刚"},{"authorName":"宋玉江","id":"38c7af01-6369-45fc-997e-0d279584af92","originalAuthorName":"宋玉江"}],"doi":"10.1016/S1872-2067(15)61104-4","fpage":"1127","id":"030f5fa6-8d9a-4cbb-bfa8-165364734a17","issue":"7","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"44654881-20ef-405e-95f6-2c48537fa626","keyword":"燃料电池","originalKeyword":"燃料电池"},{"id":"11f59f30-af41-4c97-8b60-c9efcade5c87","keyword":"氧还原反应","originalKeyword":"氧还原反应"},{"id":"a04adf89-6a52-415a-b085-e00da1e25f9d","keyword":"非贵金属催化剂","originalKeyword":"非贵金属催化剂"},{"id":"a6cd8419-8032-4311-b152-3c98eae3f187","keyword":"金属有机骨架","originalKeyword":"金属有机骨架"},{"id":"b6b50e45-f4ff-42f8-858b-185539137eda","keyword":"碱性电解液","originalKeyword":"碱性电解液"}],"language":"zh","publisherId":"cuihuaxb201607020","title":"以金属有机骨架为前驱体的高活性氧还原非贵金属催化剂制备","volume":"37","year":"2016"}],"totalpage":9,"totalrecord":83}