选用A356/SiC复合材料与Semi-metallic pad材料进行干滑动摩擦磨损试验,并采用SEM、XRD、EDS等手段分析了复合材料的摩擦磨损特点及磨损机制.铝基复合材料与该pad问表现出非常出色的耐摩擦磨损特性,在lm/s的低滑动速度下,即使载荷增加到700 N也几乎不发生磨损;载荷不大于500 N时,磨损率与滑动速度无关,保持非常小的范围.只有在高载荷、高滑动速度下才会有较为明显的磨损.摩擦系数则随载荷增大产生无规则变化,而随滑动速度的增加而减少,但变化幅度在0.1之内.复合材料耐磨特性好的主要原因是,磨损过程中磨损面上迅速形成以氧化物和石墨为主的润滑膜,减少磨损.高载荷、高滑动速度下磨损的主要特点为,复合材料表层形成塑性流动层,大的塑性流动变形使得较软的铝合金基体沿磨损方向以片状形式挤出,形成特殊的磨屑.而不易变形的SiC颗粒则留在磨损面上形成SiC聚集区,该区域又能在一定程度上减少进一步的磨损.
参考文献
[1] | Ipek R .[J].Journal of Materials Processing Technology,2005,162-163:71. |
[2] | Sug-Won Kim;Jin-Sung;Park Ar et al.[J].Journal of the Korean Foundrymen's Society,2002,22(04):184. |
[3] | Song Baoyun;Gao Fei;Chen Jiguang et al.[J].China Railway Science,2004,25(04):11. |
[4] | Howell G J;Ball A .[J].Wear,1995,181-183:279. |
[5] | Blan P J;McLaughlin J C .[J].Tribology International,2003,36:709. |
[6] | Grigoris E. Kiourtsidis;Stefanos M. Skolianos .Wear behavior of artificially aged AA2024/40 μm SiC{sub}p composites in comparison with conventionally wear resistant ferrous materials[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,2002(9/10):946-956. |
[7] | Garcia-Cordovilla C;Narciso J;Louis E .[J].Wear,1996,192:170. |
[8] | Muratoglu M;Aksoy M .[J].Journal of Materials Processing Technology,2006,1 74:272. |
[9] | Manchang Gui;Suk-Bong lOng;Jung-Moo Lee .[J].Journal of Mnterinls Science,2000,35:4749. |
[10] | Manchang Gui;Suk-Bong Kang;Jung-Moo Lee .[J].Materials Science and Engineering,2000,A293:146. |
[11] | Natarajan N;Vijayarangan S;Rajendran I .[J].Wear,2006,261:812. |
[12] | Zhu Longju;Chen Xihong;Qi Bin et al.[J].Electric Locomotives & Mass Transit Vehicles,2006,29(01):1. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%