欢迎登录材料期刊网

材料期刊网

高级检索

综述了锂离子电池碳材料与锡基合金复合材料的发展现状,总结了C-Sn二元复合材料的主要种类,并分析了它们作为负极材料的电化学性能特点;同时阐述了C-Sn-金属三元复合材料的发展,这种复合材料结合了碳材料的循环稳定性和合金材料的高比容量的优势,是具有发展前景的新型锂离子电池负极材料.

参考文献

[1] Ferguson PP;Todd ADW;Dahn JR .Comparison of mechanically alloyed and sputtered tin-cobalt-carbon as an anode material for lithium-ion batteries[J].Electrochemistry communications,2008(1):25-31.
[2] 刘廷禹,张启仁,庄松林.钨酸铅晶体中与铅空位有关的电子结构和色心模型研究[J].物理学报,2006(06):2914-2921.
[3] Shi LH.;Wang ZX.;Huang XJ.;Chen LQ.;Li H. .Nano-SnSb alloy deposited on MCMB as an anode material for lithium ion batteries[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,2001(5):1502-1505.
[4] Nishi Y .The development of lithium ion secondary batteries[J].Chem Record,2001,1(05):406.
[5] Nishi Y. .Lithium ion secondary battery technologies, present and future[J].Macromolecular symposia,2000(0):187-193.
[6] 刘宇,解晶莹,杨军,王可,王保峰.锂离子电池中SnCux/CMS复合材料的制备[J].电化学,2003(01):87-92.
[7] Dahn JR.;Mao O.;Courtney IA. .Short-range Sn ordering and crystal structure of Li4.4Sn prepared by ambient temperature electrochemical methods[J].Solid state ionics,1998(3/4):289-294.
[8] Besenhard J O;Wachtler M;Winter M .Kinetics of Li insertion into polycrystalline and nanocrystalline 'SnSb' alloys investigated by transient and steady state techniques[J].Journal of Power Sources,1999,81-82:268.
[9] J. Yang;Y. Takeda;N. Imanishi;T. Ichikawa .Study of the cycling performance of finely dispersed lithium alloy composite electrodes under high Li-utilization[J].Journal of Power Sources,1999(2):220-224.
[10] Li H;Shi L H;Lu W et al.Studying on capacity loss and fading of nanosized SnSb alloy anode for Li ion batteries[J].Eletrochemical Society,2001,148(08):A915.
[11] X.Wu;Z.Wang;L.Chen;X.Huang .Surface compatibility in a carbon-alloy composite and its influence on the electrochemical performance of Li/ion batteries[J].Carbon: An International Journal Sponsored by the American Carbon Society,2004(10):1965-1972.
[12] Wu XD.;Li H.;Chen LQ.;Huang XJ. .Agglomeration and the surface passivating film of Ag nano-brush electrode in lithium batteries[J].Solid state ionics,2002(3/4):185-192.
[13] 万婷,穆道斌,薛欢,陈实.锂离子电池锡基负极材料的研究进展[J].材料导报,2010(09):117-120,136.
[14] Li H.;Wang Q.;Shi LH.;Chen LQ.;Huang XJ. .Nanosized SnSb alloy pinning on hard non-graphitic carbon spherules as anode materials for a Li ion battery[J].Chemistry of Materials,2002(1):103-108.
[15] 吴锋,李艳红,吴川,白莹.碳热还原法制备锡-石墨复合材料及其性能表征[J].过程工程学报,2008(02):399-403.
[16] Yang Shubin;Song Huaihe;Chen Xiaohong .Nanosized tin and tin oxides loaded expanded mesocarbon microbeads as negative electrode material for lithitum-ion batteries[J].Journal of Power Sources,2007,173(01):87.
[17] 王红强,颜志雄,李庆余,张安娜,代启发.新型锡/碳复合材料的制备及其用于锂离子电池负极材料的研究[J].化工新型材料,2007(08):8-9.
[18] 郭炳焜,舒杰,唐堃,白莹,王兆翔,陈立泉.纳米锡/硬碳复合材料作为嵌锂负极的研究[J].电化学,2009(01):5-8.
[19] Zhang R;Lee J Y;Liu Z L .Pechini process-derived tin oxide and tin oxide-graphite composites for lithium-ion batteries[J].Journal of Power Sources,2002,112(02):596.
[20] Wang Y;Lee J Y .Characterizations of Al-Y thin film composite anode materials for lithium-ion batteries[J].ELECTROCHEMISTRY COMMUNICATIONS,2003,5:292.
[21] Joong Kee Lee;Ryu D H;Jeh Beck Ju et al.Electrochemical characteristics of graphite coated with tin-oxide and copper by fluidised-bed chemical vapour deposition[J].Journal of Power Sources,2002,107(01):90.
[22] Parth Patel;Il-Seok Kim;Jeffrey Maranchi et al.Pyrolysis of an alkyltin/polymer mixture to form a tin/carbon composite for use as an anode in lithium-ion batteries[J].Journal of Power Sources,2004,135(1-2):273.
[23] Wang G X;Ahn JungHo;Lindsay M J et al.Graphite-Tin composites as anode materials for lithium-ion batteries[J].Journal of Power Sources,2001,97-98:211.
[24] M. Marcinek;L.J. Hardwick;T.J. Richardson;X. Song;R. Kostecki .Microwave plasma chemical vapor deposition of nano-structured Sn/C composite thin-film anodes for Li-ion batteries[J].Journal of Power Sources,2007(2):965-971.
[25] L.Z. Zhao;S.J. Hu;Q. Ru;W.S. Li;X.H. Hou;R.H. Zeng;D.S. Lu .Effects Of Graphite On Electrochemical Performance Of Sn/c Composite Thin Film Anodes[J].Journal of Power Sources,2008(2):481-484.
[26] 宁林坚,王玲治,方世璧.用于锂离子电池负极材料的锡/碳复合材料研究[J].高分子学报,2008(09):915-919.
[27] 张万红,黄钊文,岳敏.碳热还原法制备负极复合材料Sn/C[J].电池,2010(01):16-18.
[28] Yang J;Winter M;Besenhard J O .Small particle size multiphase Li-alloy anodes for lithium-ion-batteries[J].Solid State Ionicis,1996,90(1-4):281.
[29] David Morrison .New Materials Extend Li-ion Performance[J].Power Electronics Technology,2006(1):50-52.
[30] Hassoun J;Panero S;Mulas G et al.An electrochemical investigation of a Sn-Co-C ternary alloy as a negative electrode in Li-ion batteries[J].Journal of Power Sources,2007,171:928.
[31] He Jianchao;Zhao Hailei;Wang Mengwei et al.Preparation and characterization of Co-Sn-C anodes for lithium-ion batteries[J].Material Science and Engineering,2010,171(1-3):35.
[32] 蔡金书,黄令,柯福生,孙世刚.纳米Sn-Co/石墨复合材料的制备、结构和电化学性能[J].电化学,2009(01):79-82.
[33] Zhongxue Chen;Jiangfeng Qian;Xinping Ai;Yuliang Cao;Hanxi Yang .Preparation and electrochemical performance of Sn-Co-C composite as anode material for Li-ion batteries[J].Journal of Power Sources,2009(1):730-732.
[34] 刘宇,解晶莹,杨军,王可,王保峰.锂离子电池中的高容量合金/碳复合电极研究[J].无机材料学报,2003(01):163-168.
[35] 闫润宝,任建国,赵海雷,何向明.喷雾干燥-碳热还原法制备的Sn2Sb/C复合材料[J].电池,2010(03):124-126.
[36] Iijima S .Opening carbon nanotubes with oxygen and implications filling[J].NATURE,1993,362:522.
[37] Wei Xiang Chen;Jim Yang Lee;Zhaolin Liu .Electrochemical lithiation and de-lithiation of carbon nanotube-Sn_2Sb nanocomposites[J].Electrochemistry communications,2002(3):260-265.
[38] Guo H;Zhao HL;Ha XD .Spherical Sn-Ni-C alloy anode material with submicro/micro complex particle structure for lithium secondary batteries[J].Electrochemistry communications,2007(9):2207-2211.
[39] 刘宇,解晶莹,杨军,王可,王保峰.锂离子电池中SnCux/CMS复合材料的制备[J].电化学,2003(01):87-92.
[40] 蒲薇华,任建国,何向明,万春荣,姜长印.锂离子电池用锡铜合金负极的研究[J].电池,2006(01):10-12.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%