采用XRD、FESEM-EDS、ICP及EIS等方法对Ti0.17Zr0.08V0.34Cu0.01Cr0.1Ni0.3储氢合金的微观结构及电化学性能进行了研究.XRD分析结果表明Ti0.17Zr0.08V0.34Cu0.01 Cr0.1Ni0.3固溶体储氢合金由BCC结构的V基固溶体主相和少量的C14 Laves相组成.FESEM-EDS测试结果表明V基固溶体主相为树枝晶结构,C14 Laves相呈网格状围绕着树枝晶.电化学测试结果表明,Ti0.17Zr0.08V0.34 Cu0.01 Cr0.1Ni0.3氢化物电极在303~343K较宽的温度区间内具有良好放电容量,在343K时电化学容量高达316.5mAh/g;在303K时循环100周次后,其容量为278.2mAh/g,容量保持率为87.0%,表明氢化物电极具有较好的循环稳定性,但其高倍率放电性能较差.Ti0.17Zr0.08V0.34Cu0.01Cr0.1Ni0.3氢化物电极的电化学阻抗谱表明,电极电化学反应的电荷转移电阻(RT)随温度的增加而显著降低,交换电流密度(I0)随温度的增加显著增加.ICP分析结果表明,V和Zr元素向KOH电解质中溶解严重,这可能是Ti0.17Zr0.08V0.34Cu0.01Cr0.1Ni0.3氢化物电极容量衰减的主要原因.
参考文献
[1] | 乔玉卿,赵敏寿,朱新坚,曹广益.机械合金化制备Mg-Ni合金氢化物电极材料的研究进展[J].无机材料学报,2005(01):33-41. |
[2] | Pan H G;Zhu Y F;Gao M X et al.[J].Journal of Alloys and Compounds,2004,370:254-260. |
[3] | Tsukahara M;Tskahasha K;Mishima T et al.[J].Journal of Alloys and Compounds,1998,243:133-138. |
[4] | Iba H;Akiba E .[J].Journal of Alloys and Compounds,1995,231:508-512. |
[5] | Tsukahara M;Tskahasha K;Mishima T et al.[J].Journal of Alloys and Compounds,1995,231:616-620. |
[6] | Mouri T.;Iba H. .Hydrogen-absorbing alloys with a large capacity for a new energy carrier[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(0):346-350. |
[7] | Huot J;Akiba E;Ogura T et al.[J].Journal of Alloys and Compounds,1995,218:101-109. |
[8] | Chiaki I;Shinji N;Zhang Shuguo et al.[J].Journal of Alloys and Compounds,1999,258:246-249. |
[9] | Chi Y J;Zhao M S;International J .[J].Hydrogen Energy Progress,2005,30:279-283. |
[10] | Geng M M;Han J W .[J].Hydrogen Energy Progress,1998,23(11):1055-1060. |
[11] | Kuriyama N;Sakai T;Miyamura H et al.[J].Journal of Alloys and Compounds,1993,202:183-197. |
[12] | Zhu Y F;Pan H G;Gao M X et al.[J].International Journal of Hydrogen Energy,2003,28:311-316. |
[13] | 原鲜霞,徐乃欣.温度对贮氢合金MlNi3.75Co0.65Mn0.4Al0.2动力学性能的影响[J].化学学报,2002(01):13-18. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%