欢迎登录材料期刊网

材料期刊网

高级检索

Though extensively studied, hardness, defined as the resistance of a material to deformation, still remains a challenging issue for a formal theoretical description due to its inherent mechanical complexity. The widely applied Teter's empirical correlation between hardness and shear modulus has been considered to be not always valid for a large variety of materials. The main reason is that shear modulus only responses to elastic deformation whereas the hardness links both elastic and permanent plastic properties. We found that the intrinsic correlation between hardness and elasticity of materials correctly predicts Vickers hardness for a wide variety of crystalline materials as well as bulk metallic glasses (BMGs). Our results suggest that, if a material is intrinsically brittle (such as BMGs that fail in the elastic regime), its Vickers hardness linearly correlates with the shear modulus (H(v) = 0.151G). This correlation also provides a robust theoretical evidence on the famous empirical correlation observed by Teter in 1998. On the other hand, our results demonstrate that the hardness of polycrystalline materials can be correlated with the product of the squared Pugh's modulus ratio and the shear modulus (H(v) = 2(k(2)G)(0.585) - 3 where k =G/B is Pugh's modulus ratio). Our work combines those aspects that were previously argued strongly, and, most importantly, is capable to correctly predict the hardness of all hard compounds known included in several pervious models. (C) 2011 Elsevier Ltd. All rights reserved.

参考文献

上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%