欢迎登录材料期刊网

材料期刊网

高级检索

航空发动机涡轮叶片工作时表面经常产生CaO-MgO-Al2O3-SiO2(简称CMAS)等沉积物。本文中研究了电子束物理气相沉积(EB-PVD)制备ZrO2热障涂层(TBCs)在CMAS环境下的热循环行为及失效机制。结果表明, 在1200℃热冲击条件下, 表面涂覆CMAS的热障涂层的热循环寿命低于100次, 而未涂覆CMAS的涂层寿命达到500次以上, CMAS 的存在加速了热障涂层的剥落失效。在1200℃经过210次循环后, ZrO2陶瓷层与CMAS之间形成了约8 μm厚的互反应区, 其形成主要与CMAS中Ca^2+内扩散有关。CMAS环境下热障涂层陶瓷层产生大量横向裂纹, 涂层的失效主要以陶瓷层片状剥落为主。

CaO-MgO-Al2O3-SiO2 (CMAS in short) deposits are often generated on the surface of in-service aircraft engine blades. In this paper, the thermal cycling behavior and associated failure mechanism of EB-PVD zirconia-based thermal barrier coatings (TBCs) with CMAS deposits were investigated. The results show that the thermal cycling life of TBCs with CMAS deposits at 1200℃ is less than 100 cycles, whereas the life of TBCs without CMAS is more than 500 cycles. CMAS deposits accelerate the spallation failure of TBCs. After 210 thermal cycles at 1200℃, about 8 μm interaction layer is formed between CMAS and zirconia ceramic layer, which is mainly due to the inward diffusion of Ca^2+ from the CMAS deposits. A large number of transverse cracks are generated in the ceramic layer of TBCs with CMAS deposits. The failure of TBCs occurs mainly by chipping spallation of the ceramic layer.

参考文献

[1] Miller R A. Thermal barrier coatings for aircraft engines: History and directions[J]. Journal of Thermal Spray Technology, I997, 6(1): 35-42.
[2] Meier S M, Gupta D K. The evolution of thermal barrier coatings in gas turbine engine applications [J].Journal of Emgineering for Gas Turbines and Power, 1994, 116(1) : 250- 257.
[3] Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas- turbine engine application[J].cience, 2002, 296 : 280-284.
[4] StrangmanT, Raybould D, Jameel A, et al. Damage mechanisms, life prediction, and development of EB - PVD thermal barrier coatings for turbine airfoils [J]. Surface and Coatings Technology, 2007, 202(4-7): 658-664.
[5] Hutchinson J W, Evans A G. On the dclamination of thermal harrier coatings in a thermal gradient [J]. Surface and Coatings Technology, 2002, 149(2/3): 179-184.
[6] WuRT, Osawa M, Yokokawa T, et al. Degradation mechanisms of an advanced jet engine service - retired TBC component[J]. Journal of Solid Mechanics and Materials Engineering, 2010, 4(2): 119-130.
[7] Wright P K, Evans A G. Mechanisms governing the performance of thermal barrier coatings[J]. Current Opinion in Solid State and Materials Science, 1999, 4(3): 255-265.
[8] Kim J, Dunn M G, Baran A J, et al. Deposition of volcanic materials in the hot sections of two gas turbine engines[J].Journal of Engineering for Gas Turbines and Power, 1993, 115(3) : 641-651.
[9] Stott F H, Wet de D J, Taylor D J. Degradation of thermal- barrier coatings at very high temperatures[J]. MRS Bulletin, 1994, 19(10): 46-49.
[10] Borom M P, Johnson C A, Peluso L A. Role of environmental deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings [J]. Surface and Coatings Technology, 1996, 86/87(1-3): 116-126.
[11] KramerS, Yang J, Levi C G, et al. Thermochemical interaction of thermal barrier coatings with molten CaO - MgO -A12 Oa -SiO2 [J]. Journal of the American Ceramic Society, 2006, 89(10) : 3167-3175.
[12] Chen X. Calcium- magnesium - alumina - silicate (CMAS) delamination mechanisms in EB - PVD thermal barrier coatings [J]. Surface and Coatings Technology, 2006, 200(11) : 3418- 3427.
[13] Evans A G, Hutchinson J W. The mechanics of coatingdelamination in thermal gradients [J]. Surface and Coatings Technology, 2007, 201(18): 7905-7916.
[14] Wu J, Guo H, Gao Y, et al. Microstructure and thermo- physical properties of yttria stabilized zirconia coatings with CMAS deposits [J].Journal of the European Ceramic Society, 2011, 31(10): 1881-1888.
[15] SmialekJ L, Archer F A, Garlick R G. Turbine airfoil degradation in the Persian Gulf war [J]. JOM Journal of the Minerals Metals and Materials Society, 1994, 46(12) : 39-41.
[16] Garvie R C, Nicholson P S. Structure and thermomechanical properties of partially stabilized zirconia in the CaO - ZrO2 system [J]. Journal of the American Ceramic Society, 1972, 55(3) : 152-157.
[17] Suresh A, Mayo M J, Porter W D. Thermodynamics of the tetragonal-to- monoclinic phase transformation in fine and nanocrystalline yttria stabilized zirconia powders [J]. Journal of Materials Research, 2003, 18(12): 2912-2921.
[18] Liu H C, Murarka S P. Elastic and viscoelastic analysis of stress in thin films [J]. Journal of Applied Physics, 1992, 72 (8) : 3458-3463.
[19] Hsueh C H. Modeling of elastic deformation of multilayers due to residual stresses and external bending [J]. Journal of Applied Physics, 2002, 91(12), 9652-9656.
[20] Ingel R P, Lewis HI D. Lattice parameters and density for Y O3-stabilized ZrOz [J]. Journal of the American Ceramic Society, 1986, 69(4): 325-332.
[21] Sehulz U. Phase transformation in EB - PVD yttria partially stabilized zirconia thermal barrier coatings during annealing [J]. Journal of the American Ceramic Society, 2000, 83(4): 904-910.
[22] 张丹华,王璐,郭洪波,等.多元稀土氧化物掺杂二氧化锆基陶瓷材料的热物理性能[J].复合材料学报,2011,28(2):179-184.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%