欢迎登录材料期刊网

材料期刊网

高级检索

综述了利用共连续亚微观结构和填料的选择性分散来设计和制备功能与智能高分子材料的最新研究成果。重点介绍了双连续结构的形成及其在介电绝缘材料、导电导热材料和形状记忆材料等体系中的应用。与“海-岛”结构相比,“双连续”结构中的两个组分都可以形成三维网络结构,因而都可看作基体相,有利于材料的力学、导电以及导热等性能的协同提高。通过控制功能性金属或无机填料在共连续结构中的选择性分散可以在很大范围内调节和优化材料的功能和智能特性,为设计和制备新型高分子纳米复合材料提供了新思路。

The latest progress in the design and preparation of functional and smart polymer materials with fillers’ selective localization in cocontinuous submicroscopic architecture was reviewed. The forma-tion of bicontinuous structure and its applications in the dielectric and insulating materials, electrically and thermally conductive materials, and shape memory materials were introduced mainly. Compared with the“sea-island”architecture where one phase is the continuous phase while the other phase is the dis-persed phase, the two phases of cocontinuous architecture can form three-dimensional network and can be taken as continuous matrices. Such a structure is benifical to synergistic improve the mechanical, electri-cally conductive, and thermally conductive properties of materials. Besides, by controlling the selective lo-calization of functional metallic or inorganic fillers in the cocontinuous architecture, the functional and smart characteristics of materials can be tuned and optimized in a wide range. This strategy provides a new idea on the design and preparation of novel polymer nanocomposite materials.

参考文献

[1] Zhao J;Chen M;Wang X et al.Triple Shape Memory Ef-fects of Cross-Linked Polyethylene/Polypropylene Blends with Cocontinuous Architecture[J].ACS Applied Materials& Interfaces,2013,5(12):5550-5556.
[2] Cao J P;Zhao X;Zhao J et al.Improved Thermal Conduc-tivity and Flame Retardancy in Polystyrene/Poly(vinylidene fluoride)Blends by Controlling Selective Localization and Surface Modification of SiC Nanoparticles[J].ACS Applied Materials & Interfaces,2013,5(15):6915-6924.
[3] Wang Z;Zhao J;Chen M et al.Dually Actuated Triple Shape Memory Polymers of Crosslinked Polycyclooctene-Car-bon Nanotube/Polyethylene Nanocomposites[J].ACS Applied Materials & Interfaces,2014,6(22):20051-20059.
[4] 殷卫峰,杨中强,颜善银,李杜业.功能填料高填充聚合物基复合材料绝缘性能研究进展[J].绝缘材料,2014(02):14-18.
[5] Ren L;Zhao J;Wang S J et al.Remarkably Variable Di-electric and Magnetic Properties of Poly(vinylidene fluoride)Nanocomposite Films with Triple-Layer Structure[J].Com-posites Science and Technology,2015,107:107-112.
[6] Li L;Shen X;Hong S W et al.Fabrication of Co-continu-ous Nanostructured and Porous Polymer Membranes:Spinod-al Decomposition of Homopolymer and Random Copolymer Blends[J].Angew Chem Int Ed,2012,51(17):4089-4094.
[7] Li L;Miesch C;Sudeep P K et al.Kinetically Trapped Co-continuous Polymer Morphologies Through Intraphase Ge-lation of Nanoparticles[J].NANO LETTERS,2011,11(5):1997-2003.
[8] Pu G;Luo Y;Wang A et al.Tuning Polymer Blends to Co-continuous Morphology by Asymmetric Diblock Copolymers as the Surfactants[J].MACROMOLECULES,2011,44(8):2934-2943.
[9] Wang L;Lau J;Thomas E L et al.Co-continuous Compos-ite Materials for Stiffness,Strength,and Energy Dissipation[J].Advanced Materials,2011,23(13):1524-1529.
[10] Lee J H;Wang L;Boyce M C et al.Periodic Bicontinu-ous Composites for High Specific Energy Absorption[J].NANO LETTERS,2012,12(8):4392-4396.
[11] Zhao X;Zhao J;Cao J P et al.Tuning the Dielectric Properties of Polystyrene/Poly(vinylidene fluoride)Blends by Selectively Localizing Carbon Black Nanoparticles[J].The Journal of Physical Chemistry(B)Materials Surfaces Interfaces & Physical,2013,117(8):2505-2515.
[12] Cao J P;Zhao J;Zhao X et al.High Thermal Conductivi-ty and High Electrical Resistivity of Poly(vinylidene fluo-ride)/Polystyrene Blends by Controlling the Localization of Hybrid Fillers[J].Composites Science and Technology,2013,89:142-148.
[13] Zhao X;Cao J P;Zhao J et al.Advanced Dielectric Poly-mer Nanocomposites by Constructing a Ternary Continu-ous Structure in Polymer Blends Containing Poly(methyl methacrylate)(PMMA)Modified Carbon Nanotubes[J].Journal of Materials Chemistry A,2014,2(27):10614-10622.
[14] Zhao X;Zhao J;Cao J P et al.Effect of the Selective Localization of Carbon Nanotubes in Polystyrene/Poly(vinyl-idene fluoride)Blends on Their Dielectric,Thermal,and Mechanical Properties[J].Materials and Design,2014,56:807-815.
[15] Goeldel A;Marmur A;Kasaliwal G R et al.Shape-Depen-dent Localization of Carbon Nanotubes and Carbon Black in an Immiscible Polymer Blend During Melt Mixing[J].MACROMOLECULES,2011,44(15):6094-6102.
[16] 党智敏;赵军;任粒 .介电高分子复合材料研究新进展[J].功能材料信息,2014,11(4):7-13.
[17] Li Y;Huang X;Hu Z et al.Large Dielectric Constant and High Thermal Conductivity in Poly(vinylidene fluoride)/Barium Titanate/Silicon Carbide Three-Phase Nanocompos-ites[J].ACS Applied Materials & Interfaces,2011,3(11):4396-4403.
[18] Zhao J;Yin X;Shi J et al.Effect of the Mixing on the Dielectric Constant of Poly(vinylidene fluoride)/Isotactic Polypropylene Blends[J].Science of Advanced Materials,2013(5):505-511.
[19] 李会录,邵康宸,韩江凌,杨林涛.用于金属基板的高导热绝缘介质胶膜的研制[J].绝缘材料,2014(06):46-49.
[20] Li T L;Hsu S L C .Enhanced Thermal Conductivity of Polyimide Films via a Hybrid of Micro-and Nano-Sized Boron Nitride[J].The Journal of Physical Chemistry(B)Materials Surfaces Interfaces & Physical,2010,114(20):6825-6829.
[21] Voit W;Ware T;Dasari R R et al.High-Strain Shape-Mem-ory Polymers[J].Advanced Functional Materials,2010,20(1):162-171.
[22] Anthamatten M;Roddecha S;Li J .Energy Storage Capaci-ty of Shape-Memory Polymers[J].MACROMOLECULES,2013,46(10):4230-4234.
[23] Huang M;Dong X;Wang L et al.Two-Way Shape Memo-ry Property and Its Structural Origin of Cross-Linked Poly(ε-caprolactone)[J].RSC Advances,2014,4(98):55483-55494.
[24] Ma L;Zhao J;Wang X et al.Effects of Carbon Black Nanoparticles on Two-Way Reversible Shape Memory in Crosslinked Polyethylene[J].POLYMER,2015,56(1):490-497.
[25] Marc Behl;Andreas Lendlein .Triple-shape polymers[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,2010(17):3335-3345.
[26] Zotzmann J;Behl M;Hofmann D et al.Reversible Tri-ple-Shape Effect of Polymer Networks Containing Polypen-tadecalactone-and Poly(ε-caprolactone)-Segments[J].Ad-vanced Materials,2010,22(31):3424-3429.
[27] Zotzmann J;Behl M;Feng Y et al.Copolymer Networks Based on Poly(ε-pentadecalactone)and Poly(ε-caprolactone)Segments as a Versatile Triple-Shape Polymer System[J].Advanced Functional Materials,2010(20):3583-3594.
[28] Ahn S K;Kasi R M .Exploiting Microphase-Separated Mor-phologies of Side-Chain Liquid Crystalline Polymer Net-works for Triple Shape Memory Properties[J].Advanced Functional Materials,2011,21(23):4543-4549.
[29] Ware T;Hearon K;Lonnecker A et al.Triple-Shape Mem-ory Polymers Based on Self-Complementary Hydrogen Bonding[J].MACROMOLECULES,2012,45(2):1062-1069.
[30] Bae C Y;Park J H;Kim E Y et al.Organic-Inorganic Nanocomposite Bilayers with Triple Shape Memory Effect[J].Journal of Materials Chemistry,2011,21(30):11288-11295.
[31] Bothe M;Mya K Y;Lin E M J et al.Triple-Shape Prop-erties of Star-Shaped POSS-Polycaprolactone Polyurethane Networks[J].SOFT MATTER,2012,8(4):965-972.
[32] Xie T .Tunable Polymer Multi-Shape Memory Effect[J].Na-ture,2010,464:267-270.
[33] He Z;Satarkar N;Xie T et al.Remote Controlled Multi-shape Polymer Nanocomposites with Selective Radiofre-quency Actuations[J].Advanced Materials,2011,23(28):3192-3196.
[34] Li J;Liu T;Xia S et al.A Versatile Approach to Achieve Quintuple-Shape Memory Effect by Semi-Interpene-trating Polymer Networks Containing Broadened Glass Transition and Crystalline Segments[J].Journal of Materi-als Chemistry,2011,21(33):12213-12217.
[35] Li J;Xie T .Significant Impact of Thermo-Mechanical Con-ditions on Polymer Triple-Shape Memory Effect[J].Macro-molecules,2011,44(1):175-180.
[36] Zhang, H;Wang, HT;Zhong, W;Du, QG .A novel type of shape memory polymer blend and the shape memory mechanism[J].Polymer,2009(6):1596-1601.
[37] Luo X;Mather P T .Triple-Shape Polymeric Composites(TSPCs)[J].Advanced Functional Materials,2010,20(16):2649-2656.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%