{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"利用单摆划痕法的动态加载特性,研究了Ni-P化学镀层本身的塑脆转变.镀层的塑脆转变除可采用Lamy建议的塑脆转变深度D′判据外,还提出用新定义的临界法向力Fnc来表征.根据划痕深度d和法向力Fnc的大小,可把镀层在划痕过程中的力学行为分为塑性变形、塑脆转变和脆性断裂三个阶段.分析讨论了磷含量和热处理温度对塑脆转变的影响.","authors":[{"authorName":"黄林国","id":"fb34b5fb-9cc1-429d-b1e1-84ec7a82dd89","originalAuthorName":"黄林国"},{"authorName":"李曙","id":"ff3373b3-de82-414e-88ad-9cf32066af6a","originalAuthorName":"李曙"},{"authorName":"李诗卓","id":"eacea48c-9083-4ab4-bf9a-f1fdf196adab","originalAuthorName":"李诗卓"}],"doi":"10.3969/j.issn.1001-1560.2003.06.008","fpage":"22","id":"54b2dfbe-c836-4222-baa0-acf936ea590f","issue":"6","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"b561fcbb-064a-470e-a2f2-341aada23848","keyword":"Ni-P化学镀层","originalKeyword":"Ni-P化学镀层"},{"id":"05f0a16d-4ac5-480b-93a1-ba1e61a156f3","keyword":"塑脆转变","originalKeyword":"塑脆转变"},{"id":"ce8a0297-c877-4fd3-8d65-efc22db46759","keyword":"动态加载","originalKeyword":"动态加载"}],"language":"zh","publisherId":"clbh200306008","title":"Ni-P化学镀层在动态加载条件下的塑脆转变","volume":"36","year":"2003"},{"abstractinfo":"研究了两种低合金高强度工程机械用钢--HG50和CF60的母材和焊接接头(包括焊缝和焊接热影响区)在三种压头位移速率下的断裂韧性随着温度的变化行为,分析了加载速率和焊接工艺对于其断裂韧性的影响.结果表明:HG50和CF60钢的断裂韧性尽管对于加载速率很敏感,仍然具有较好的动态断裂韧性,适于用做承受冲击的工程机械的受力构件;焊接过程可造成韧-脆转变温度的升高,加大了韧-脆转变曲线过渡区的温度范围,并使得过渡区内的断裂韧性数据具有较大的发散性.","authors":[{"authorName":"唐国翌","id":"154bbd66-0d5d-43c7-bb77-7b3b78499081","originalAuthorName":"唐国翌"},{"authorName":"董剑鹏","id":"f654fe15-aa50-4417-8c75-1cf80eee756b","originalAuthorName":"董剑鹏"},{"authorName":"陈卓华","id":"46da6ca0-1072-4792-9100-02d15ec16df3","originalAuthorName":"陈卓华"},{"authorName":"刘雅娣","id":"37388272-632e-447d-85cd-c6471b44a45e","originalAuthorName":"刘雅娣"}],"doi":"","fpage":"49","id":"71af4547-d21b-4a93-b02d-4adb9960a322","issue":"1","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"fd8069f4-56c0-44a9-9d5a-f459b534a617","keyword":"焊接","originalKeyword":"焊接"},{"id":"80efbf7c-187d-457c-ac2b-2c66158f140a","keyword":"动态加载","originalKeyword":"动态加载"},{"id":"09f30001-fc30-427d-873c-0f43c2d40936","keyword":"断裂韧性","originalKeyword":"断裂韧性"}],"language":"zh","publisherId":"gt199801012","title":"工程机械用HG50和CF60钢的动态断裂韧性","volume":"33","year":"1998"},{"abstractinfo":"利用分离式Hopkinson动态压缩装置对添加0.03%Y2O3(质量分数,下同)的细晶93W-4.9Ni-2.1Fe合金试样进行动态力学性能测试,观察分析了动态压缩后合金试样的显微组织.结果表明:在应变速率为1900 s-1下,合金沿着与冲击方向成45°的方向形成了明显的绝热剪切带,宽度10~25 μm.说明该合金对局部绝热剪切的敏感性大大提高且能在相对较低的应变速率下发生绝热剪切.同时位于剪切带中心区域的钨颗粒沿着其扩展方向被剧烈拉长成纤维状,表现出塑性流动局域失稳的特征.","authors":[{"authorName":"龚星","id":"f302b061-73cf-4cee-aadd-ac3effd2195f","originalAuthorName":"龚星"},{"authorName":"范景莲","id":"abe80537-c6fb-4968-9705-ab812cc6e261","originalAuthorName":"范景莲"},{"authorName":"刘涛","id":"7ced1b3c-9605-4e4e-b527-8d67bb8dfb6f","originalAuthorName":"刘涛"},{"authorName":"田家敏","id":"c1cd68fa-c824-46c3-a5e2-c0f749b8b53b","originalAuthorName":"田家敏"},{"authorName":"黄伯云","id":"56e7862e-739b-4c0c-8cf4-e0a7e943d5c7","originalAuthorName":"黄伯云"},{"authorName":"李树奎","id":"a7f2dc4d-55fa-4bad-a4af-c36ab94068d0","originalAuthorName":"李树奎"}],"doi":"","fpage":"1390","id":"3d7c31d8-ba45-4436-ab3f-e8f12e982ae6","issue":"8","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"c9be691b-b7f5-44aa-894c-6de85c611802","keyword":"细晶钨合金","originalKeyword":"细晶钨合金"},{"id":"fd9fae64-9a0b-44be-adac-b33c1eca28da","keyword":"动态加载","originalKeyword":"动态加载"},{"id":"8b76552c-8918-4cff-ab5f-ae726f4cae74","keyword":"绝热剪切带","originalKeyword":"绝热剪切带"}],"language":"zh","publisherId":"xyjsclygc201008015","title":"细晶93W-4.9Ni-2.1Fe合金动态压缩下绝热剪切带的形成及其特征","volume":"39","year":"2010"},{"abstractinfo":"膜和基体之间界面结合强度是评价膜层质量很重要的性能指标.采用单摆冲击划痕法对膜基界面结合强度进行了定量研究.单摆冲击划痕法具有动态加载的特性,可从力和能量两个方面获得膜基破坏过程信息,用其测定的膜基界面单位面积所消耗的能量ε可用来定量表征膜基界面结合强度.研究结果表明,提高镀层磷含量、选择合适的基材表面粗糙度(Ra≈0.4μm)和合适的热处理温度(400℃)有利于提高Ni-P化学镀层的界面结合强度和临界法向载荷.","authors":[{"authorName":"黄林国","id":"51eb8840-f8c9-4f1e-85a0-938950b6271d","originalAuthorName":"黄林国"}],"doi":"10.3969/j.issn.1001-3660.2005.01.007","fpage":"19","id":"1d7ed9c3-52da-4a55-ada4-b6bf47e4c61d","issue":"1","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"1e98d4dc-437f-40db-911f-5cbbad7f45ad","keyword":"单摆冲击划痕法","originalKeyword":"单摆冲击划痕法"},{"id":"b5601e9d-1be9-43b3-8ad2-f391062a81f3","keyword":"Ni-P化学镀层","originalKeyword":"Ni-P化学镀层"},{"id":"7d18c022-7b58-4f8b-b6d6-07e1f613346b","keyword":"动态加载","originalKeyword":"动态加载"},{"id":"bbe3cdb1-80aa-499f-b5c6-003eb2340617","keyword":"界面结合强度","originalKeyword":"界面结合强度"}],"language":"zh","publisherId":"bmjs200501007","title":"用单摆冲击划痕法测定膜基界面结合强度","volume":"34","year":"2005"},{"abstractinfo":"采用实验-数值相结合的方法对40Cr和30CrMnSiNi2A两种高强钢剪切试样在冲击载荷作用下的Ⅱ型动态断裂韧性进行了测试.实验在Hopkinson压杆系统上完成,试样的起裂时间采用应变片法测得.结合有限元三维动态模拟,得到了不同加载速率下试样动态应力强度因子的时间历程,并由实测的起裂时间确定两种钢的动态断裂韧性.结果表明,在现有加载率范围(2×106-7×106MPa.m1/2/s)内,两种高强钢试样几乎全部由绝热剪切模式引发断裂,其动态断裂韧性均随加载速率的增加而呈现上升趋势,且在相同加载速率下后者的动态断裂韧性大于前者的动态断裂韧性.并对韧带尺寸对试样断裂韧性的影响进行了研究.","authors":[{"authorName":"许泽建","id":"e2a9a3ab-36a6-4829-bbff-7e5c93cca912","originalAuthorName":"许泽建"},{"authorName":"李玉龙","id":"e4cec0d4-18f7-4f38-80d5-ccc2f8315e09","originalAuthorName":"李玉龙"},{"authorName":"刘元镛","id":"4c3b6976-3072-4cc6-a0fa-eadded788cba","originalAuthorName":"刘元镛"},{"authorName":"罗景润","id":"2e83f514-d711-428c-b045-57fd6fa29e18","originalAuthorName":"罗景润"},{"authorName":"陈裕泽","id":"2559a554-d4f4-4b68-8e03-7e13f3dd121b","originalAuthorName":"陈裕泽"}],"doi":"10.3321/j.issn:0412-1961.2006.06.013","fpage":"635","id":"c71b8956-4e12-4635-b821-45f28557fe27","issue":"6","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"5e722964-1e5c-419f-9f87-35f6185dd4da","keyword":"高强钢","originalKeyword":"高强钢"},{"id":"6faffca1-7634-487e-877e-21dae68e654f","keyword":"加载速率","originalKeyword":"加载速率"},{"id":"4be06313-2da0-404c-bdaf-fecd4ba03fa7","keyword":"剪切载荷","originalKeyword":"剪切载荷"},{"id":"ac1cde3f-3bae-4276-87e2-3e98afab7419","keyword":"动态断裂韧性","originalKeyword":"动态断裂韧性"},{"id":"6cde5d69-963e-4385-87e1-c9c3015e0afc","keyword":"动态应力强度因子","originalKeyword":"动态应力强度因子"}],"language":"zh","publisherId":"jsxb200606013","title":"两种高强钢在高加载速率下的Ⅱ型动态断裂韧性","volume":"42","year":"2006"},{"abstractinfo":"钨合金与贫铀弹相比,在穿甲过程中由于形成\"蘑菇头\"而不能形成很好的绝热剪切带而使其穿甲性能不及贫铀弹.钨合金在高速冲击加载下的动态力学性能和失效决定着钨合金穿甲性能,为此,本文综述了十多年来国内外对钨合金在高速冲击加载下的动态力学性能和失效机理的研究现状.","authors":[{"authorName":"范景莲","id":"bd6eaf03-9445-4ed7-8312-185144e1b508","originalAuthorName":"范景莲"},{"authorName":"刘涛","id":"288e3436-3f16-4973-9325-8e2910345a9b","originalAuthorName":"刘涛"},{"authorName":"成会朝","id":"b29bfb0a-56cc-4f81-897c-306750f4f78e","originalAuthorName":"成会朝"},{"authorName":"黄伯云","id":"40e9517e-a6ed-40c0-9a5c-eeb050280643","originalAuthorName":"黄伯云"}],"doi":"","fpage":"841","id":"d46670ec-3f0f-498e-8320-1995bd231124","issue":"6","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"efd7396f-c431-4f27-89ce-8c91c56f5a12","keyword":"钨合金","originalKeyword":"钨合金"},{"id":"f04ce09e-156e-4ce1-8f81-22b0f7689eb0","keyword":"动态力学性能","originalKeyword":"动态力学性能"},{"id":"3a5ca405-947f-404b-af32-ab98fd24385b","keyword":"失效","originalKeyword":"失效"}],"language":"zh","publisherId":"xyjsclygc200606001","title":"钨合金在高速加载条件下的动态力学性能和失效机理","volume":"35","year":"2006"},{"abstractinfo":"采用实验-数值相结合的方法对40Cr和30CrMnSiNi2A两种高强钢剪切试样在冲击\n载荷作用下的II型动态断裂韧性进行了测试. 实验在Hopkinson压杆系统上\n完成, 试样的起裂时间采用应变片法测得. 结合有限元三维动态模拟, 得到\n了不同加载速率下试样动态应力强度因子的时间历程, 并由实测的起裂时间\n确定两种钢的动态断裂韧性. 结果表明, 在现有加载率范围(2 ×10 6 - 7×10 6 MPa m 1/2 /s)内,\n两种高强钢试样几乎全部由绝热剪切模式引发断裂, 其动态\n断裂韧性均随加载速率的增加而呈现上升趋势, 且在相同加载速率下后者的\n动态断裂韧性大于前者的动态断裂韧性. 并对韧带尺寸对试样断裂韧性的影响进行了研究.","authors":[{"authorName":"许泽建","id":"fee74b35-9108-49fd-9e93-90384d55a4a4","originalAuthorName":"许泽建"},{"authorName":"李玉龙","id":"c33fb448-5b6f-4a39-a670-bbe6075c10fd","originalAuthorName":"李玉龙"},{"authorName":"刘元镛","id":"39e517da-9c2a-44de-85c7-63f01fa0d9e7","originalAuthorName":"刘元镛"},{"authorName":"罗景润","id":"c0207dce-bb38-49f4-98ba-2bf55e9837bd","originalAuthorName":"罗景润"},{"authorName":"陈裕泽","id":"f9d2351c-9f57-4e94-85d1-88bc6fe7bce3","originalAuthorName":"陈裕泽"}],"categoryName":"|","doi":"","fpage":"635","id":"b7614401-a42b-4a29-8ac1-6d9d1ead8563","issue":"6","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"7dec43ad-c40d-466e-a8cf-cdd817847ba6","keyword":"高强钢","originalKeyword":"高强钢"},{"id":"55ae72c1-8dab-44e7-b1a0-d320c29cecc6","keyword":"loading rate","originalKeyword":"loading rate"},{"id":"7b9391ea-3bdc-4ddf-a21c-266ddb7edf78","keyword":"shear loading","originalKeyword":"shear loading"}],"language":"zh","publisherId":"0412-1961_2006_6_13","title":"两种高强钢在高加载速率下的II型动态断裂韧性","volume":"42","year":"2006"},{"abstractinfo":"采用实验-数值方法对40Cr和30CrMnSiNi2A两种高强钢三点弯曲试样在不同加载速率的冲击载荷作用下进行了动态断裂韧性的测试,并对其率相关性进行研究.实验在Hopkinson压杆系统上完成,试样的起裂时间采用应变片法测得.结合有限元三维动态模拟,得到了不同加载速率下试样动态应力强度因子的时间历程并由实测的起裂时间确定材料动态断裂韧性.结果表明,在本工作加载速率范围内(106 MPa·m1/2/s),40Cr钢为解理型断裂,其动态断裂韧性随加载速率增加的变化趋势不明显;而30CrMnSiNi2A钢则在较大程度上表现为延性断裂的特征,其动态断裂韧性随加载速率的增加呈明显上升趋势.并对上述结果进行了宏观和微观机理分析.","authors":[{"authorName":"许泽建","id":"f7106b0b-afc9-4305-b278-a9fd368e223f","originalAuthorName":"许泽建"},{"authorName":"李玉龙","id":"e1679ef9-6904-4e14-8275-0a61ee42a447","originalAuthorName":"李玉龙"},{"authorName":"李娜","id":"551e620b-c67d-4d7c-8f85-53c1c184bb5a","originalAuthorName":"李娜"},{"authorName":"刘元镛","id":"3d97f8b7-472b-4a6d-a738-74bc1111e57b","originalAuthorName":"刘元镛"}],"doi":"10.3321/j.issn:0412-1961.2006.09.013","fpage":"965","id":"9a8398e3-90ef-42a6-abb9-42fd650d7671","issue":"9","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"1de38d81-2060-4ad1-a42c-92206fbbde63","keyword":"高强钢","originalKeyword":"高强钢"},{"id":"5136d0fa-ed4c-4c67-aecb-42634957ea15","keyword":"加载率","originalKeyword":"加载率"},{"id":"38852b3d-d8a5-4a2d-9e42-0d5cd5b051e0","keyword":"动态断裂韧性","originalKeyword":"动态断裂韧性"},{"id":"2428c12f-bd88-414a-a3bc-985ae47b3482","keyword":"动态应力强度因子","originalKeyword":"动态应力强度因子"},{"id":"b0a6b7e7-9f49-46ee-b62b-630aad6ae86f","keyword":"Ⅰ型裂纹","originalKeyword":"Ⅰ型裂纹"}],"language":"zh","publisherId":"jsxb200609013","title":"加载速率对高强钢40Cr和30CrMnSiNi2A Ⅰ型动态断裂韧性的影响","volume":"42","year":"2006"},{"abstractinfo":"利用岛津试验机和自行研制的旋转盘式冲击拉伸试验装置,对T300和M40J两种碳纤维实施了应变速率范围为0.001~1 300 s-1的静、动态拉伸试验,获得了两种材料在不同应变速率下的完整的应力应变曲线.试验结果表明,T300纤维束和M40纤维束的弹性模量、拉伸强度以及失稳应变在上述应变速率范围内均未发生明显变化,可以认为是一种与应变速率无关的材料.根据纤维束模型和纤维强度的统计理论,结合两种纤维束在不同应变速率下的试验结果,建立了纤维束的统计本构模型.模型分析表明,T300纤维强度满足两参数的单Weibull分布,而M40J纤维强度则需用双Weibull分布才能更好地描述.","authors":[{"authorName":"周元鑫","id":"a03a80ad-bded-4231-9836-438c599e2a6e","originalAuthorName":"周元鑫"},{"authorName":"江大志","id":"eda5bc08-f6ad-40f3-93f6-56d2bd7aef57","originalAuthorName":"江大志"},{"authorName":"夏源明","id":"c10e2135-e2dc-4018-8c4a-e8bf9fec8b0b","originalAuthorName":"夏源明"}],"doi":"10.3969/j.issn.1005-0299.2000.01.003","fpage":"12","id":"a3dab3ac-10e9-4465-aaf5-ded9b025994f","issue":"1","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"102c581c-a515-4efd-98ba-0c252e51f696","keyword":"T300纤维束","originalKeyword":"T300纤维束"},{"id":"6101e48f-e767-47ed-b5f5-c69b22990bea","keyword":"M40J纤维束","originalKeyword":"M40J纤维束"},{"id":"8a9500eb-6bee-4ef0-9ddf-6ccfe07c793d","keyword":"冲击拉伸","originalKeyword":"冲击拉伸"},{"id":"fdce4206-64cf-4001-8ab1-d42a4d76ef5c","keyword":"应变速率无关","originalKeyword":"应变速率无关"}],"language":"zh","publisherId":"clkxygy200001003","title":"碳纤维静、动态加载下拉伸力学性能的试验研究","volume":"8","year":"2000"},{"abstractinfo":"采用实验-数值方法对40Cr和30CrMnSiNi2A两种高强钢三点弯曲试样在不同加载速率的冲击载荷作用下进行了动态断裂韧性的测试, 并对其率相关性进行研究. 实验在Hopkinson压杆系统上完成, 试样的起裂时间采用应变片法测得. 结合有限元三维动态模拟, 得到了不同加载速率下试样动态应力强度因子的时间历程并由实测的起裂时间确定材料动态断裂韧性. 结果表明, 在本工作加载速率范围内(10 6 MPa•m 1/2/s),40Cr钢为解理型断裂, 其动态断裂韧性随加载速率增加的变化趋势不明显;而30CrMnSiNi2A钢则在较大程度上表现为延性断裂的特征, 其动态断裂韧性随加载速率的增加呈明显上升趋势. 并对上述结果进行了宏观和微观机理分析.","authors":[{"authorName":"许泽建","id":"4faed90f-f9a2-49b6-8ba4-0850f34f4932","originalAuthorName":"许泽建"},{"authorName":"李玉龙","id":"f87107ca-6923-4583-9d3d-cbf4e9bdb14b","originalAuthorName":"李玉龙"},{"authorName":"李娜","id":"e7ee113b-4e2b-44de-a751-04f8d9b31ac8","originalAuthorName":"李娜"},{"authorName":"刘元镛","id":"2128f436-d307-4223-86b3-bc77a7cf2c71","originalAuthorName":"刘元镛"}],"categoryName":"|","doi":"","fpage":"965","id":"93c06de4-9cd1-4044-9b63-a327e3bc942f","issue":"9","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"4d2e175e-a83d-467b-864b-10f9dc8ea6ba","keyword":"高强钢","originalKeyword":"高强钢"},{"id":"2eb1259b-4b76-4358-880c-7b1a24cae9b7","keyword":"loading rate","originalKeyword":"loading rate"},{"id":"9e95cc2c-855c-4d88-94e5-ee48d11839d2","keyword":"dynamic fracture toughness","originalKeyword":"dynamic fracture toughness"}],"language":"zh","publisherId":"0412-1961_2006_9_6","title":"加载速率对高强钢40Cr和30CrMnSiNi2A I型动态断裂韧性的影响","volume":"42","year":"2006"}],"totalpage":880,"totalrecord":8797}