欢迎登录材料期刊网

材料期刊网

高级检索

由肿瘤、炎症及各类创伤而导致的骨组织坏死、病变、缺失及骨折是临床多发病症,自体骨移植虽然是临床治疗的“金标准”,但由于供体受限而很难满足需求。通过对天然骨本身的成分、结构特性及矿化过程的模仿,应用先进材料制备技术,特别是纳米技术,对材料的组成、结构进行设计与凋控,获得仿生型骨修复材料或者对传统材料进行仿生功能化修饰,以满足临床对痫损或缺失的骨组织进行有效修复和功能重建具有重要意义。阐述了仿生功能化骨修复材料的相关研究,主要包括类骨钙磷纳米矿物的合成,有机分子摸板对纳米矿物尺寸和形貌的调控,以及仿生多孔结构支架的构建等。

Bone dethct and bone fracture are common clinical implications due to bone tumor resection, bone necrosis, osteitis and various traumas. Transplantation of autograft that comes from a healthy site in patient to the defect site is the gold standard treatment but the donor shortage limits its application. Mimicking the compositional and structural characteristics of bone and its biomineralization process, biomimetic functionalized bone repair materials can be produced with advanced materials synthesis and processing techniques, in particular nanotechnology development to a precise modulation. This manuscript focuses on the synthesis of nanoscale calcium and phosphate containing minerals, the control of organic molecular templates on the size and morphology of bone-like minerals, as well as the construction of biomimetic porous scaffold.

参考文献

[1] Bauer T W;Musehler G F .Bone Graft Materials:an Overview of the Basic Science[J].Clinical Orthopaedics and Related Research,2000,371:10-27.
[2] Silber JS;Anderson DG;Daffner SD;Brislin BT;Leland JM;Hilibrand AS;Vaccaro AR;Albert TJ .Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion.[J].Spine,2003(2):134-139.
[3] Langer R;Vacanti J P .Tissue Engineering[J].Science,1993,260(5110):920-926.
[4] Heneh L L;Polak J M .Third-Generation Biomedical Materials[J].Science,2002,295(5557):1014-1017.
[5] Jandt K D .Evolutions, Revolutions and Trends in Biomaterials Scienee-a Pepective[J].Advances in Engineering Materials,2007,9(12):!035-!050.
[6] S.Weiner;H.D.Wagner .The material bone: structure-Mechanical function relations[J].Annual review of materials research,1998(0):271-298.
[7] Lowenstam H A;Weiner S.On Biomineralization[M].Miami USA:Oxfbrd University Press,1989
[8] Landis W;Song M;l,eith A et al.Mineral and Organic Matrix Interaction in Normally Calcifying Tendon Visualized in three Di- mensions by High-Vohage Electron Microscopic: Tomography and Graphic linage Reconstruction[J].Journal of Structural Biology,1993,110(01):39-54.
[9] Hodge A;Petruska J.Recent Studies with the Electron Microscope on Ordered Aggregates of the Tropocollagen Molecule[A].San Diego:academic Press,1963:289-300.
[10] Hoang Q Q;Sicheri F;Howard A J et al.Bone Recognition Mechanism of P~reine Osteoealein from Crystal Structure[J].Nature,2003,425(6 961):977-980.
[11] Dorozhkin SV .Nanosized and nanocrystalline calcium orthophosphates.[J].Acta biomaterialia,2010(3):715-734.
[12] Cui FZ;Li Y;Ge J .Self-assembly of mineralized collagen composites[J].Materials Science & Engineering, R. Reports: A Review Journal,2007(1/6):1-27.
[13] Laschke MW;Witt K;Pohlemann T;Menger MD .Injectable nanocrystalline hydroxyapatite paste for bone substitution: in vivo analysis of biocompatibility and vascularization.[J].Journal of biomedical materials research, Part B. Applied biomaterials,2007(2):494-505.
[14] Paul W;Sharnm C P .Nanoceramic Matrices: Biomedical Appli- cations[J].American Journal of Biochemistry and Biotechnology,2006,2(02):41-48.
[15] Spoerke E D;Murray N G;Li H et al.A Bioactive Titanium Foam Seaffold for Bone Repair[J].Aeta Biomaterialia,2005,1(05):523-533.
[16] Hartgerink J D;Beniash E;Stupp S I .Self-Assembly and Miner- alization of Peptide-Amphiphile Nanofibers[J].Science,2001,294(5547):1684-1688.
[17] Wei Zhang;Zhao-Long Huang;Su-San Liao .Nucleation Sites of Calcium Phosphate Crystals during Collagen Mineralization[J].Journal of the American Ceramic Society,2003(6):1052-1054.
[18] Kikuchi M;Itoh S;Ichinose S;Shinomiya K;Tanaka J .Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo.[J].Biomaterials,2001(13):1705-1711.
[19] Muller Mai CM;Stupp SI;Voigt C;Gross U .Nanoapatite and organoapatite implants in bone: histology and ultrastructure of the interface.[J].Journal of biomedical materials research, Part B. Applied biomaterials,1995(1):9-18.
[20] Du C, Cul F;Feng Q et al.Tissue Response to Nano- Hydmxyapatite/Collagen Composite hnplants in MmTow Cavity[J].Journal of Biomedical Materiaks Research,1998,42(04):540-548.
[21] Wu YJ;Bose S .Nanocrystalline hydroxyapatite: Micelle templated synthesis and characterization[J].Langmuir: The ACS Journal of Surfaces and Colloids,2005(8):3232-3234.
[22] Yah L;Li Y;Deng Z X et al.Surfactant-Assisted Hydrothermal Synthesis of Hydroxyapatite Nanomds[J].International Journal of lnorganic Materials,2001,3(07):633-637.
[23] Jarudilokkul S;Tanthapanichakoon W;Boonamnuayvittaya V .Synthesis of hydroxyapatite nanoparticles using an emulsion liquid membrane system[J].Colloids and Surfaces, A. Physicochemical and Engineering Aspects,2007(1/3):149-153.
[24] Tari N E;Kashani Motlagh M M;Sohrabi B .Synthesis of Hydroxyapatite Partieles in Catanionic Mixed Surfactants Template[J].Materials Chemistry and Physics,2011,131:132-135.
[25] Salarian M;Solati Hashjin M;Shafiei S S et al.Template-Di- rected Hydrothermal Synthesis of Dandelion-Like Hydroxyapatite in the Presence of Cetyhrimethylammonium Bromide and Polyeth- ylene Glycol[J].Ceramics lnternation al,2009,35(07):2563-2569.
[26] Wang Y;Hassan M S;Gunawan P et al.Polyelectrolyte Media- ted Formation of Hydroxyapatite and Hierarchical Structure[J].Microspheres of Controlled Size Journal of Colloid and Interface Science,2009,339(01):69-77.
[27] Chen JD;Wang YJ;Wei K;Zhang SH;Shi XT .Self-organization of hydroxyapatite nanorods through oriented attachment[J].Biomaterials,2007(14):2275-2280.
[28] Wang Y J;Lai C;Wei K et al.Investigations on Their Forma- tion Mechanism of Hydroxyapatite Synthesized by Solvothermal Method[J].Nanotechnology,2006,17:4405-4412.
[29] Wang Y J;Chen J D;Wei K et al.Surfactant-Assisted Synthe- sis of Hydroxyapatite Particles[J].Materials Letters,2006,60(27):3227-3231.
[30] Wei K;Lai C;Wang YJ .Solvothermal synthesis of calcium phosphate nanowires under different pH conditions[J].Journal of Macromolecular Science. Pure and Applied Chemistry,2006(10):1531-1540.
[31] Y. Wang;C. Lai;K. Wei .Influence of temperature, ripening time, and cosurfactant on solvothermal synthesis of calcium phosphate nanobelts[J].Materials Letters,2005(8/9):1098-1104.
[32] Yingjun Wang;Shuhua Zhang;Kum Wei .Hydrothermal synthesis of hydroxyapatite nanopowders using cationic surfactant as a template[J].Materials Letters,2006(12):1484-1487.
[33] Wang, Y.;Moo, Y.X.;Chen, C.;Gunawan, P.;Xu, R. .Fast precipitation of uniform CaCO_3 nanospheres and their transformation to hollow hydroxyapatite nanospheres[J].Journal of Colloid and Interface Science,2010(2):393-400.
[34] Xiao X;Liu R;Qiu C et al.Biomimetic Synthesis of Microme- ter Spherical Hydroxyapatite with fi-Cyclodextrin as Template[J].Materials Science and Engineering C,2009,29(03):785790.
[35] Hagmeyer D;Ganesan K;Ruesing J et al.Self-Assembly of Calcium Phosphate Nanoparticles into Hollow Spheres Induced by Dissolved Amino Acids[J].Journal of Materials Chemistry,2011,21(25):9219-9223.
[36] Ben Wang;Peng Liu;Wenge Jiang .Yeast Cells with an Artificial Mineral Shell:Protection and Modification of Living Cells by Biomimetic Mineralization[J].Angewandte Chemie,2008(19):3560-3564.
[37] Sung Ho Yang;Kyung-Bok Lee;Bokyung Kong .Biomimetic Encapsulation of Individual Cells with Silica[J].Angewandte Chemie,2009(48):9160-9163.
[38] Miaojun Huang;Yingjun Wang .Synthesis of calcium phosphate microcapsules using yeast-based biotemplate[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,2012(2):626-630.
[39] 杨字霞;王迎军;陈晓峰 .CaO-P2O5-Si02系统生物活性纳米粒子形貌和粒径分布影响因素探讨[J].硅酸盐通报,2004,23(06):93-105.
[40] Chen, XF;Lei, B;Wang, YJ;Zhao, N .Morphological control and in vitro bioactivity of nanoscale bioactive glasses[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2009(13):791-796.
[41] Lei,B.;Chen,X.;Wang,Y.;Zhao,N.;Du,C.;Fang,L. .Surface nanoscale patterning of bioactive glass to support cellular growth and differentiation[J].Journal of biomedical materials research, Part A,2010(4):1091-1099.
[42] Lei,B.;Chen,X.;Wang,Y.;Zhao,N.;Du,C.;Fang,L. .Surface nanoscale patterning of bioactive glass to support cellular growth and differentiation[J].Journal of biomedical materials research, Part A,2010(4):1091-1099.
[43] Bo Lei;Xiaofeng Chen;Yingjun Wang;Naru Zhao .Synthesis and in vitro bioactivity of novel mesoporous hollow bioactive glass microspheres[J].Materials Letters,2009(20):1719-1721.
[44] Lei B;Chen X;Wang Y et al.Fabrication of Porous Bioactive Glass by One Step Sintering[J].Materials Letters,2010,64(21):2293-2295.
[45] Pappas GS;Liatsi P;Kartsonakis IA;Danilidis I;Kordas G .Synthesis and characterization of new SiO2-CaO hollow nanospheres by sol-gel method: Bioactivity of the new system[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2008(2/9):755-760.
[46] Xia W;Chang J .Well-ordered mesoporous bioactive glasses (MBG): A promising bioactive drug delivery system[J].Journal of Controlled Release: Official Journal of the Controlled Release Society,2006(3):522-530.
[47] Xia W;Chang J;Lin J;Zhu J .The pH-controlled dual-drug release from mesoporous bioactive glass/polypeptide graft copolymer nanomicelle composites.[J].European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fuer Pharmazeutische Verfahrenstechnik e.V,2008(2):546-552.
[48] Xia W;Chang J .Preparation, in vitro bioactivity and drug release property of well-ordered mesoporous 58S bioactive glass[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2008(12/13):1338-1341.
[49] Yan X;Yu C;Zhou X et al.Highly Ordered Mesoporous Bioac- tire Glasses with Superior In Vitro Bone-Forming Bioactivities[J].Angewandte Chemie International Edition,2004,43(44):5980-5984.
[50] Combes C;Bareille R;Rey C .Calcium carbonate-calcium phosphate mixed cement compositions for bone reconstruction.[J].Journal of biomedical materials research, Part A,2006(2):318-328.
[51] Ginebra MP;Traykova T;Planell JA .Calcium phosphate cements: competitive drug carriers for the musculoskeletal system?[J].Biomaterials,2006(10):2171-2177.
[52] Wang X;Ye J;Wang Y .Influence of a novel radiopacifier on the properties of an injectable calcium phosphate cement.[J].Acta biomaterialia,2007(5):757-763.
[53] Wang X;Ye J;Wang Y;Wu X;Bai B .Control of crystallinity of hydrated products in a calcium phosphate bone cement.[J].Journal of biomedical materials research, Part A,2007(4):781-790.
[54] Wang X;Ye J;Wang Y;Chen L .Self-setting properties of a beta-dicalcium silicate reinforced calcium phosphate cement.[J].Journal of biomedical materials research, Part B. Applied biomaterials,2007(1):93-99.
[55] Wang X;Chen L;Xiang H et al.Influence of Anti-Washout A- gents on the Rheological Properties and Injectability of a Calcium Phosphate Cement[J].Journal of Biomedical Materials Research Part B:Applied Biomaterials,2007,81(02):410-418.
[56] Qi x P;Ye J D;Wang Y J .Alginate/Poly(Lactic-Co-Glycolic acid)/Calcium Phosphate Cement Scaffold with Oriented Pore Structure for Bone Tissue Engineering[J].Journal of Biomedic- al Materials Reowarch:Part A,2009,89A:980-987.
[57] 漆小鹏,叶建东,王秀鹏,王迎军.具有定向孔隙结构的大孔磷酸钙骨水泥支架的制备与表征[J].硅酸盐学报,2007(12):1577-1581.
[58] Wan-Ju Li;Cato T. Laurencin;Edward J. Caterson .Electrospun nanofibrous structure: A novel scaffold for tissue engineering[J].Journal of biomedical materials research, Part B. Applied biomaterials,2002(4):613-621.
[59] Kim GM;Asran AS;Michler GH;Simon P;Kim JS .Electrospun PVA/HAp nanocomposite nanofibers: biomimetics of mineralized hard tissues at a lower level of complexity[J].Bioinspiration & biomimetics,2008(4):46003-1-46003-12-0.
[60] Liu X;Won Y;Ma PX .Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering.[J].Biomaterials,2006(21):3980-3987.
[61] Wei G;Ma PX .Partially nanofibrous architecture of 3D tissue engineering scaffolds.[J].Biomaterials,2009(32):6426-6434.
[62] Wei G;Ma PX .Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres.[J].Journal of biomedical materials research, Part A,2006(2):306-315.
[63] Chuan Gao;Yizao Wan;Chunxi Yang;Kerong Dai;Tingting Tang;Honglin Luo;Jiehua Wang .Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold[J].Journal of porous materials,2011(2):139-145.
[64] Liu X;Won Y;Ma PX .Surface modification of interconnected porous scaffolds.[J].Journal of biomedical materials research, Part A,2005(1):84-91.
[65] He, LM;Zhang, YQ;Zeng, X;Quan, DP;Liao, S;Zeng, YS;Lu, J;Ramakrishna, S .Fabrication and characterization of poly(L-lactic acid) 3D nanofibrous scaffolds with controlled architecture by liquid-liquid phase separation from a ternary polymer-solvent system[J].Polymer: The International Journal for the Science and Technology of Polymers,2009(16):4128-4138.
[66] Jundong Shao;Cong Chen;Yingjun Wang;Xiaofeng Chen;Chang Du .Structure and surface nanomechanics of poly(L-lactide) from thermally induced phase separation process[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2012(17):6665-6671.
[67] Shao, J.;Chen, C.;Wang, Y.;Chen, X.;Du, C. .Early stage structural evolution of PLLA porous scaffolds in thermally induced phase separation process and the corresponding biodegradability and biological property[J].Polymer Degradation and Stability,2012(6):955-963.
[68] Peng F;Shaw M T;Olson J R et al.Hydroxyapatite Needle- Shaped Particles/Poly (L-Lactic Acid ) Electrospun Scaffolds with Perfect Particle-along-Nanofiber Orientation and Significantly Enhanced Mechanical Properties[J].Journal of Physical Chemis- tryC,2011,115(32):15743-15751.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%