欢迎登录材料期刊网

材料期刊网

高级检索

边界条件处理方式是否合理,不仅影响阴极保护体系电位分布的数值解,而且影响模型的应用范围。根据Al—Zn-In牺牲阳极与316L不锈钢在海水介质中的自腐蚀电位差,选用适宜的电位区间及扫速,获得材料实测极化曲线处理非线性边界,建立了牺牲阳极阴极保护系统的非线性边界模型。由于该模型不依赖于极化动力学参数,很大程度上简化了牺牲阳极阴极保护系统的模拟。采用有限元方法进行求解,初步讨论了AI—Zn-In牺牲阳极放置位置、形状和放置方式对被保护316L不锈钢管表面电位分布的影响规律。数值模拟获得的规律与现有的阴极保护理论相符,验证了该模型的可行性。

The way of handling boundary condition not only affects the numerical potential distribution of cathodic protection system, but also affects the application of the model. According to the difference of corrosion potentials of Al-Zn-In sacrificial anode and 316L stainless steel in seawater, the appropriate polarization potential range and scan rate were chosen to measure the polarization curves used for handling boundary conditions and founding a nonlinear boundary model for the sacrificial anode cathodic protection system. The current model which does not depend on the polarization dynamic parameters simplifies the simulation for sacrificial anode cathodic protection. Numerical results of the influences of Al-Zn-In sacrificial anode placement, shape and placement mode on the potential distribution of 316L stainless steel agree well with the existing theory and thus verify the feasibility of current model.

参考文献

[1] 杜艳霞 .金属储罐底板外侧阴极保护电位分布规律研究[D].中国石油大学(华东),2007.
[2] DeGiorgi VG.;Lucas KE.;Thomas ED. .Scale effects and verification of modeling of ship cathodic protection systems[J].Engineering analysis with boundary elements,1998(1):41-49.
[3] 何其昀 .海洋工程防腐系统数值模拟优化设计技术研究[D].大连理工大学,2009.
[4] B. Vuillemin;R. Oltra;R. Cottis;D. Crusset .Consideration of the formation of solids and gases in steady state modelling of crevice corrosion propagation[J].Electrochimica Acta,2007(27):7570-7576.
[5] F.M. Song;N. Sridhar .Modeling pipeline crevice corrosion under a disbonded coating with or without cathodic protection under transient and steady state conditions[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,2008(1):70-83.
[6] 王巍 .几种金属在海水中阴极保护数值计算及瞬态激励影响研究[D].中国科学院研究生院,2011.
[7] J. X. Jia;G. Song;A. Atrens;D. St. John;J. Baynham;G. Chandler .Evaluation of the BEASY program using linear and piecewise linear approaches for the boundary conditions[J].Materials and Corrosion,2004(11):845-852.
[8] Kiran B. Deshpande .Validated numerical modelling of galvanic corrosion for couples: Magnesium alloy (AE44)-mild steel and AE44-aluminium alloy (AA6063) in brine solution[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,2010(10):3514-3522.
[9] 翁永基.阴极保护设计中的模型研究及其应用[J].腐蚀科学与防护技术,1999(02):99-111.
[10] 刘磊 .船体阴极保护电位分布研究[D].大连理工大学,2006.
[11] Caire JP;Rameau JJ;Rabiot D. -;Boyer S;Dalard F. - .Study of sacrificial anode cathodic protection of buried tanks. Numerical modelling[J].Journal of Applied Electrochemistry,1999(5):541-550.
[12] R. Montoya;O. Rendon;J. Genesca .Mathematical simulation of a cathodic protection system by finite element method[J].Materials and Corrosion,2005(6):404-411.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%