采用拉伸速率突变法,研究Ti-29Nb-13Ta-5Zr(Ti-29-13)合金冷轧后在700~800℃和5×10<'-4>~1×10<'-2>s<'-1>应变速率范围内的高温变形行为和变形机制,并与典型β钛合金Ti-15V-3Cr-3Sn-3AI(Ti-15-3)进行比较.结果显示两种合金中均出现了非连续屈服现象,Ti-29-13合金的亚晶行为不同于Ti-15-3合金.Ti-29-13合金的延伸率低于Ti-15-3合金,应力指数,n几乎恒定为3.3,变形激活能为152~161 kJ/mol;Ti-15-3合金在730℃以上的n值为2.3~2.5,变形激活能为173~176kJ/mol.
参考文献
[1] | Semlitsch M;Staub F;Webber H .[J].Biomedizinische Technik,1985,30:334. |
[2] | Kuroda D.;Morinaga M.;Kato Y.;Yashiro T.;Niinomi M. .Design and mechanical properties of new beta type titanium alloys for implant materials[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1998(1/2):244-249. |
[3] | Niinomi M;Fukui H;Hattori T et al.[J].Materia Japan(in Japanese),2002,41:221. |
[4] | Zhou Q;Itoh G;Motohashi Y et al.[J].Materials Transactions,2006,47:63. |
[5] | Hamilton C H;Suphal Pagrawal.Superplastic Forming[M].Metals Park,Ohio:American Society for Metals,1985:13. |
[6] | 李才巨,顾家琳,刘庆.Ti-15-3钛合金超塑行为研究[J].材料科学与工艺,2007(03):319-324. |
[7] | 潘雅琴;杨昭苏.[A].Shanghai:The Institute of Shanghai Steel,1990:513. |
[8] | 陈慧琴,林好转,郭灵,曹春晓.钛合金热变形机制及微观组织演变规律的研究进展[J].材料工程,2007(01):60-64. |
[9] | Bae D H;Ghosh A H .[J].Acta Materialia,2000,48:1207. |
[10] | Weiss I;Semiatin S L .[J].Materials Science and Engineering,1998,A243:46. |
[11] | Zhou Q;Itoh G;Hasegawa H et al.[J].Materials Science Forum,2005,475-479:2299. |
[12] | Maruyama K.Materials Science of High-Temperature Strength[M].Tokyo:Uchida Rokakuho Press,1997:15. |
[13] | Schuh C;Dunand D C .[J].Scripta Metallurgica,2001,45:1415. |
[14] | 张俊善.材料的高温变形和断裂[M].北京:科学出版社,2007:77. |
[15] | Srinivasan R;Weiss I;Eylon D;Boyer R R,Koss D A.Beta Titanium Alloys in the 1990"s[M].Warrendale,P A:The Minerals Metals & Material Society,1993:283. |
[16] | Langdon T G .[J].Acta Metallurgica Et Materialia,1994,42:2437. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%