欢迎登录材料期刊网

材料期刊网

高级检索

将超临界流体与撞击流技术相结合,提出了一项新的包覆技术—超临界撞击流技术(SFIT)。以石蜡和玻璃微珠分别作为包覆模型材料的壁材和芯材,考察该技术的可行性和有效性;研究混合器内压力、温度、撞击釜内撞击距离以及膨胀前温度等因素对于微胶囊的表观包覆率和表观形态的影响。结果表明,在混合器内压力20MPa以上、温度75℃,且撞击距离70mm,膨胀前温度140℃时,得到的微胶囊团聚小,包覆均匀且效果较好。实验采用电子扫描电镜、激光粒度分布仪和差式扫描量热仪等检测方法从微胶囊的表观包覆率、粒径分布范围、表面形态等角度进行评价。从结果来看,超临界流体与撞击流技术相结合可以实现微胶囊的包覆且效果良好。

Supercritical fluid impinging technology(SFIT) was proposed as a novel microparticle coating process,which combines supercritical fluid technique with impinging steam technique.The process was investigated using ultrafine glass beads as the core particle and paraffin as the coating material.The effects of the operation parameters,such as pressure,temperature,impinging distance and pre-expansion temperature were investigated.As the result,the optimal operation condition was: pressure of 20MPa,temperature of 75℃,impinging distance of 70mm,and pre-expansion temperature of 140℃.A number of techniques were used for the characterization of the microcapsules.A scanning electron microscope(SEM) was used to observe the morpho-logy of the particle surface.The microcapsule size distribution is measured by laser particle size analyzer(LPSA),and differential scanning calorimeter(DSC) measurements were conducted to determine the apparent coating rates of microcapsules.As a result,the advantages of SFIT enhance the mass transfer and heat transfer,which prevent particles agglomeration and coating of microparticle by SFIT is demonstrated to have enormous potential.

参考文献

[1] Yu Yaoting.Bio-medical materials[M].Tianjin:The Publishing House of Tianjin University,2000:5-15.
[2] Li Fengsheng;Jiang Wei;Fu Yanming.Powder technology of medication[M].北京:化学工业出版社,2007:175-181.
[3] Zhu Ziqiang.Supercritical fluid technology[M].北京:化学工业出版社,2000:516-538.
[4] 王亭杰,堤敦司,金涌.用石蜡-CO2超临界流体快速膨胀在流化床中进行细颗粒包覆[J].化工学报,2001(01):50-55.
[5] 蒲曦鸣,康云清,陈爱政,尹光福,廖立,陈琳.超临界CO2抗溶剂法制备聚乳酸药物缓释微球[J].功能材料,2007(04):549-552.
[6] 蒋静智,李志义,刘学武.超临界流体技术制备聚合物超细微粒[J].功能材料,2010(07):1236-1239.
[7] 谢家庆,冯发美,胡伟,毛华军,晏华,李慈.石蜡为芯材的微胶囊的直接原位聚合法制备和性能[J].功能材料,2008(02):293-296.
[8] Reverchon E;De Marco I;Della Porta G .Rifampicin microparticles production by supercritical antisolvent precipitation.[J].International Journal of Pharmaceutics,2002(1/2):83-91.
[9] Bleich J;Kleinebudde P;Muller B W .Influence of gas density and pressure on Microparticles producted with the ASES process[J].International Journal of Pharmaceutics,1994,106:77-84.
[10] Amol J;Thote PhD;Ram B et al.Formation of nanoparticles of hydrophilic drug using supercritical carbon dioxide and mircoencapsulation for sustained release[J].Nanomedicine:Nanotechnology Biology and Medicine,2005,1(01):85-90.
[11] Tu L S;Dehghani F;Foster N R .Micronisation and microencapsulation of pharmaceuticals using a carbon dioxide antisolvent[J].Powder Technology,2002,126:134-149.
[12] K. Rosenkranz;M.M. Kasper;J. Werther .Encapsulation of irregularly shaped solid forms of proteins in a high-pressure fluidized bed[J].The Journal of Supercritical Fluids,2008(3):351-357.
[13] Wischke C;Schwendeman SP .Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles.[J].International Journal of Pharmaceutics,2008(2):298-327.
[14] Wang Qi;Guan Yixin;Yao Shanjing et al.Microparticle formation of sodium cellulose sulfate using supercritical fluid assisted atomization introduced by hydrodynamic cavitation mixer[J].Chemical Engineering Journal,2010,159:220-229.
[15] Wu Yuan.Properties and application of impinging streams[M].北京:化学工业出版社,2005:3-6.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%