欢迎登录材料期刊网

材料期刊网

高级检索

采用密度泛函理论巾的广义梯度近似(GGA)的PW91方法结合周期性平板模型,研究了H2O,OH和O在立方ZrO2(110)面上不同吸附位的吸附.结果表明,在bridge位H2O以垂直底物甲面氢原子向上模式吸附在立方ZrO2(110)而时发牛解离形成表面羟基,吸附能为150.5 kJ/mo1.而在top位H2O以垂直底物平面氢原子向下模式吸附为物理吸附,吸附能为14.8 kJ/mo1.OH和O在立方ZrO2(110)面的最佳吸附位是top位,其吸附能分别为241.5和209.1 kJ/mo1.同时分析了Mulliken布居、态密度和伸缩振动频率.

参考文献

[1] Ruuska H;Pakkanen T A;Rowley R L .[J].Journal of Physical Chemistry B,2004,108:2614.
[2] Qin Ch Y;Whitten J L .[J].Journal of Physical Chemistry B,2005,109:8852.
[3] Seong S;Anderson A B .[J].Journal of Physical Chemistry,1996,100:11744.
[4] 付爱萍,冯大诚,杜冬梅,王焕杰.为什么水在金属表面的吸附构型是倾斜的--水在铜、铝表面吸附的量子化学计算[J].化学物理学报,2000(03):307-311.
[5] 付爱萍,冯大诚,杜冬梅,邓从豪.H2O在Al(111)表面吸附的量子化学研究[J].化学物理学报,2000(01):49-54.
[6] Jung S J;Lee J Y;Hong S;Kim S .[J].Journal of Physical Chemistry B,2005,109:24445.
[7] Neves RS;Motheo AJ;Fartaria RPS;Fernandes FMSS .Modelling water adsorption on Au(210) surfaces. I. A force field for water - Au interactions by DFT[J].Journal of Electroanalytical Chemistry: An International Journal Devoted to All Aspects of Electrode Kinetics, Interfacial Structure, Properties of Electrolytes, Colloid and Biological Electrochemistry,2007(2):140-146.
[8] Hartnig C;Grimminger J;Spohr E .Adsorption of formic acid on Pt(111) in the presence of water[J].Journal of Electroanalytical Chemistry: An International Journal Devoted to All Aspects of Electrode Kinetics, Interfacial Structure, Properties of Electrolytes, Colloid and Biological Electrochemistry,2007(1/2):133-139.
[9] Karlberg G S .[J].Physical Review B,2006,74:153414.
[10] Contescu C;Contescu A;Schwarz J A .[J].J t'hys Chem,1994,98:4327.
[11] Nygren M A;Pettersson L G M .[J].Journal of Physical Chemistry,1996,100:1874.
[12] Wu X Y;Ray A K .[J].Physical Review B,2002,65:085403.
[13] Raz S.;Maier J.;Riess I.;Sasaki K. .Characterization of adsorbed water layers on Y2O3-doped ZrO2[J].Solid state ionics,2001(2):181-204.
[14] Jung C;Koyama M;Kubo M;Imamura A Miyamoto A .[J].Applied Surface Science,2005,244:644.
[15] Iskandarova I M;Knizhnik A A;Rykova E A;Bagatur'yants A A Potapkin B V Korkin A A .[J].Microelectronic Engineering,2003,69:587.
[16] 马中义,徐润,杨成,魏伟,李文怀,孙予罕.不同形态ZrO2的制备及其表面性质研究[J].物理化学学报,2004(10):1221-1225.
[17] Walter E J;Lewis S P;Rappe A M .[J].Surface Science,2001,495:44.
[18] Grau-Crespo R;Hernandez N C;Sanz J F;De leeuw N H .[J].Journal of Physical Chemistry C,2007,111:10448.
[19] Gennard S;Cora F;Catlow C R A .[J].Journal of Physical Chemistry B,1999,103:10158.
[20] Chen W;Zhang D W;Ren J;Lu H L Zhang J Y Xu M Wang J Y Wang L K .[J].Thin Solid Films,2005,479:73.
[21] Jung C;Ishimoto R;Tsuboi H;Koyama M Endou A,Kabo M,Del Carpio C A,Miyamoto A .[J].Applied Catalysis A:General,2006,305:102.
[22] Jung K T;Bell A T .[J].Journal of Molecular Catalysis A:Chemical,2000,163:27.
[23] Orlando R;Pisani C;Ruiz E;Sautet P .[J].Surface Science,1992,275:482.
[24] Haase F.;Sauer J. .The surface structure of sulfated zirconia: Periodic ab initio study of sulfuric acid adsorbed on ZrO2(101) and ZrO2(001)[J].Journal of the American Chemical Society,1998(51):13503-13512.
[25] Takeuchi K.;Salmeron M.;Somorjai GA.;Peny SS. .THE BONDING PROPERTIES OF HYDROGENATED AND FLUORINATED MOLECULES TO ZIRCONIUM OXIDE THIN FILMS - INFLUENCE OF SURFACE DEFECTS AND WATER COADSORPTION[J].Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces,1995(1/2):30-38.
[26] Nishino Y;Krauss A R;Lin Y P;Gruen D M .[J].Journal of Nuclear Materials,1996,228:346.
[27] Delley B .[J].Journal of Chemical Physics,1990,92:508.
[28] Delley B .[J].Journal of Chemical Physics,2000,113:7756.
[29] 王霞;陈文凯;孙宝珍;陆春海 .[J].化学物理学报,2008,21:39.
[30] 郑金德,陆春海,陈文凯.H2O和OH在UO(100)表面吸附的密度泛函研究[J].无机化学学报,2008(09):1374-1380.
[31] Ma M;Zhang X;Peng L L;Wang J B .[J].Tetrahedron Letters,2007,48:1095.
[32] Paul J;Hoffmann F M .[J].Journal of Physical Chemistry,1986,90:5321.
[33] 麦松威;周公度;李伟基.高等无机结构化学[M].北京:北京大学出版社,2006:70.
[34] Ziolek M;Kujawa J;Saur O;Lavalley J C .[J].Journal of Molecular Catalysis A:Chemical,1995,97:49.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%