以纳米镍粉为催化剂,热分解法制备了碳纳米管.应用X射线衍射对碳纳米管的结构进行了研究,透射电子显微镜观察了碳纳米管的形貌.碳纳米管的直径在15nm左右,长>100nm,d002为0.338nm.在结构上,纳米碳管具有与石墨类似的良好规整性,具有较高的可石墨化度,又具有纳米级的孔径,因此具有良好的贮锂性能.对碳纳米管的充放电性能研究结果表明,碳纳米管初始放电比容量为654mAh/g,高于纯石墨的理论容量372mAh/g,循环性能较好.
Carbon nanotubes were produced by catalytic thermal decomposition using metal Ni nanopartical as catalyst.
X-ray diffraction and transmission electron microscope were used to determine the size and morphology of carbon nanotubes. The results show that carbon
nanotubes are 20--30nm in diameter and longer than 100nm with a high order degree of graphitization. There are a large amount of nanochannels lead to
higher specific capacity. The carbon nanotubes exhibit a high electrochemical storage lithium capacity, being 654mAh/g at first cycle
and having a good cycling stability.
参考文献
[1] | Ein-Eli Y, Markovsky B, Aurbach D, et al. J Electrochem Soc, 1995, 142: 716--724. [2] Frackowiak E. Gautier S, Garcher H, et al. [J] Carbon, 1999, 37: 61--68. [3] Disma F, Aymard L, Dupont L, et al. J Electrochem Soc, 1996, 143: 3959--3963. [4] Leroux F, Metenier K, Gautier S, et al. Journal of Power Source, 1999, 81: 317--323. [5] Ma R Z, Liang J, Wei B Q, et al. Journal of Power Source, 1999, 84: 126--131. [6] 陈卫祥, 吴国淘, 王春生. 物理化学学报, 2001, 14 (1): 88--94. [7] 张喃, 翟秀静, 翟玉春. 功能材料, 1999, 30 (3): 263--264. [8] 杨占红, 李新海, 王红强. 新型碳材料, 1999, 14 (2): 67--72. [9] Ebbesen T W, Ajayan P M, Hiura H, et al. [J]. Nature, 1994, 367 (10): 519--529. [10] 陈德钧. 电池工业, 1999, 4 (2) 58--63. [11] Matsumura Y, Wang S. Mondori [J]. Carbon, 1995, 10 (33): 1457--1463. [12] 刘建睿, 王猛, 尹大川, 等. 材料导报, 2001, 15 (7): 32--35. [13] 林克芝, 徐艳辉, 仁伟, 等. 电源技术, 2002, 26 (4): 314--320. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%