欢迎登录材料期刊网

材料期刊网

高级检索

A pure Cu (99.995 wt%) has been subjected to dynamic plastic deformation at cryogenic temperature to a strain of 2.1. Three types of microstructures that are related to dislocation slip, twinning and shear banding have been quantitatively characterized by transmission electron microscopy (TEM) assisted by convergent beam electron diffraction (CBED) analysis. Microstructures originated from dislocation slip inside or outside the shear bands are characterized by low angle boundaries (〈15°) that are spaced in the nanometer scale, whereas most deformation twins are deviated from the perfect ∑3 coincidence (60°/〈111〉) up to the maximum angle of 9°. The quantitative structural characteristics are compared with those in conventionally deformed Cu at low strain rates, and allowed a quantitative analysis of the flow stress-structural parameter relationship.

参考文献

[1] Y.S. Li;N.R. Tao;K. Lu .Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures[J].Acta Materialia,2008(2):230-241.
[2] C.S. Hong;N.R. Tao;X. Huang .Nucleation and thickening of shear bands in nano-scale twin/matrix lamellae of a Cu-Al alloy processed by dynamic plastic deformation[J].Acta materialia,2010(8):3103-3116.
[3] W.S. ZHAO;N.R. TAO;J.Y. GUO .High Density Nano-Scale Twins in Cu Induced by Dynamic Plastic Deformation[J].Scripta materialia,2005(6):745-749.
[4] Y.S. Li;Y. Zhang;N.R. Tao .Effect of the Zener-Hollomon parameter on the microstructures and mechanical properties of Cu subjected to plastic deformation[J].Acta materialia,2009(3):761-772.
[5] H.W. Zhang;X. Huang;N. Hansen .Evolution of micro structural parameters and flow stresses toward limits in nickel deformed to ultra-high strains[J].Acta materialia,2008(19):5451-5465.
[6] F. Dalla Torre;R. Lapovok;J. Sandlin .Microstructures and properties of copper processed by equal channel angular extrusion for 1-16 passes[J].Acta materialia,2004(16):4819-4832.
[7] A. P. Zhilyaev;S. Swaminathan;A. A. Gimazov;T. R. McNelley;T. G. Langdon .An evaluation of microstructure and microhardness in copper subjected to ultra-high strains[J].Journal of Materials Science,2008(23/24):7451-7456.
[8] X. Molodova;G. Gottstein;M. Winning;R.J. Hellmig .Thermal stability of ECAP processed pure copper[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2007(0):204-213.
[9] J. Gubicza;L. Balogh;R.J. Hellmig .Dislocation structure and crystallite size in severely deformed copper by X-ray peak profile analysis[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(0):334-338.
[10] Y. Zhang;N.R. Tao;K. Lu .Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles[J].Acta materialia,2008(11):2429-2440.
[11] L. Lu;X. Chen;X. Huang;K. Lu .Revealing The Maximum Strength In Nanotwinned Copper[J].Science,2009(5914):607-610.
[12] J. M. Martinez-Esnaola;M. Montagnat;P. Duval;J. Gil Sevillano .Geometrically necessary dislocations in a c-axis oriented cylindrical bar of basal-slipping hexagonal crystals deformed in torsion[J].Scripta materialia,2004(2):273-278.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%