欢迎登录材料期刊网

材料期刊网

高级检索

采用固/液浇注法制备了银包铜复合锭坯,经拉拔加工后,通过退火进行性能调控,制备出力学性能较好的银包铜复合细丝。研究了银包铜复合材料拉拔及退火工艺,以及工艺参数对组织和力学性能的影响规律。结果表明,随着变形量增加,Ag/Cu复合细丝极限抗拉强度是呈增加的趋势,而伸长率是随变形量增大而减小。退火后材料加工中产生的较大加工硬化得以消除,使其塑性提升,主要表现为强度下降、延伸率增大。

The silver covered copper composite ingot prepared by the solid/liquid casting method, and after drawing processing, through the annealing to adjustment the performance, prepared the silver covered copper composite fine wire with good mechanical properties. Study the influence law of drawing and annealing process and the technological parameters on the microstructure and mechanical properties of silver covered copper composite. The results show that with the increase of the deformation, the ultimate tensile strength of Ag/Cu composite fine wire is increasing, while the elongation decreases with increasing the deformation. After annealing the most of work hardening in material is eliminating, the plastic improved, the strength declined and elongation increased.

参考文献

[1] XU Gao-lei,张迎晖,LIN Mu-fa,邓江文.铜铝复合材料的研究与应用[J].有色金属加工,2008(04):6-8,25.
[2] L. Meng;S. P. Zhou;F. T. Yang;D. Z. Lin .Microstructure and elemental distribution of multicrystal Ag/Cu interface in bimetallic strips with diffusion treatment[J].Materials Research Bulletin: An International Journal Reporting Research on Crystal Growth and Materials Preparation and Characterization,2001(9):1729-1735.
[3] L. Meng;S.P. Zhou;F.T. Yang .Diffusion annealing of copper-silver bimetallic strips at different temperatures[J].Materials Characterization,2001(3/4):269-274.
[4] Blucher J;Donranszky J;Narusarusawa U.Aluminium double composite structures reinforced with composite wires[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2004(387):867-872.
[5] 戴雅康.以铜包铝线为内导体的CATV同轴电缆的特性[J].广播与电视技术,2000(03):140-142.
[6] 方晓英,郭红.热浸镀法生产的铜包钢线性能研究[J].热加工工艺,2006(22):49-51.
[7] 赵艳丽,李安,肖东娟,张学忠,吴崧.铜包铝母线生产设备的研究与设计[J].有色金属加工,2008(02):50-51,62.
[8] 沈黎 .铝-铜、钢-铝层状金属复合材料的界面反应研究[D].昆明理工大学,2002.
[9] Cave J .The mechanism of cold pressure welding by rolling[J].Journal of the Institute of Metals,1973,101(7):203-207.
[10] Gajanan P. Chaudhari;Viola Acoff .Cold roll bonding of multi-layered bi-metal laminate composites[J].Composites science and technology,2009(10):1505-1515.
[11] Chih-Yuan Chen;Weng-Sing Hwang .Effect of Annealing on the Interfacial Structure of Aluminum-Copper Joints[J].Materials transactions,2007(7):1938-1947.
[12] Teare B;Webb J R .Skin effect in bimetallic conductors[J].ELECTRICAL ENGINEERING,1943,62(6):297-302.
[13] Sasaki T;Morris R;Thompson G et al.Formation of ultra-fine copper grains in copper-clad aluminum wire[J].Scripta Materialia,2010,63(5):488-491.
[14] Sharma I;Chakraborty S;Majumdar S et al.A study on preparation of copper-niobium composite by alumino-thermic reduction of mixed oxides[J].Journal of Alloys and Compounds,2002,336(1):247-252.
[15] Sheng L;Yang F;Xi T et al.Influence of heat treatment on interface of Cu/Al bimetal composite fabricated by cold rolling[J].COMPOSITES PART B-ENGINEERING,2011,42(6):1468-1473.
[16] Steinlage G A;Bowman K J;Trumble K P .A comparison of three mechanical models for cold roll bonding metal laminates[J].Journal of Adhesion Science and Technology,1996,10(3):199-229.
[17] 谢建新.材料加工技术的发展现状与展望[J].机械工程学报,2003(09):29-34.
[18] 苏亚军,刘新华,吴永福,黄海友,谢建新,王连忠,董晓文.水平连铸直接复合成形铜包铝复合材料的组织与性能[J].特种铸造及有色合金,2011(09):785-790.
[19] 吴云忠,马永庆,刘世永,张洋.包复焊接铜包铝线加工工艺与固相结合机理研究[J].焊接,2006(04):40-42.
[20] Acarer M;G Len B;Findik F .Investigation of explosive welding parameters and their effects on microhardness and shear strength[J].Materials and Design,2003,24(8):659-664.
[21] Akbari Mousavi S;Sartangi P F .Effect of post-weld heat treatment on the interface microstructure of explosively welded titanium-stainless steel composite[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2008,494(1):329-336.
[22] 赵世臣.常用金属材料手册[M].北京:冶金工业出版社,1978:45-47.
[23] 钟群鹏,赵子华,张峥.断口学的发展及微观断裂机理研究[J].机械强度,2005(03):358-370.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%