欢迎登录材料期刊网

材料期刊网

高级检索

利用扫描电镜及波谱,研究锌浴中的钴对Q235和Q345钢热浸镀锌层组织及其生长动力学的影响.结果表明:锌浴中含0.075%(质量分数)钴时,能完全抑制Q235镀层组织发生硅反应性;而对于Q345,则需要在锌浴中加入0.3%钴才能部分抑制硅反应性;在锌浴中加入少量的钴后,镀层组织中疏松ζ层转变成与液相直接接触的富钴ζ相和由消耗δ相生成的致密ζ相;致密的ζ相层阻止液相和δ相的直接接触;富钴ζ相可容纳大约0.25% Si,避免在固-液界面产生硅的富集,液相通道消失,从而抑制含硅钢热浸镀锌过程中硅反应性的产生.

The effect of Co in Zn bath on the microstructures and growth kinetics of hot-dip galvanized coating on Q235 and Q345 steels were investigated by scanning electron microscopy and wave dispersive spectroscopy (SEM-WDS). The results show that adding 0.075% (mass fraction) Co into the Zn bath can completely inhibit the silicon reactivity in the galvanized coating on the Q235 steel. But for the Q345 steel, to inhibit the silicon reactivity, 0.3% Co should be added into the Zn bath. The loose ζ layer is transformed into the Co-rich ζ layer contacted directly with the liquid phase and the compact ζ layer formed by consuming δ phase after adding a small amount of Co into the Zn bath. The compact ζ layer can prevent the direct contact between the liquid phase and the δ phase. The solubility of Si in the Co-rich ζ phase, which is about 0.25%, can avoid the enrichment of silicon at the boundary between the coating and the liquid, and the liquid channel vanishes. This restrains the silicon reactivity during the hot-dip galvanizing of the Si-containing steel.

参考文献

[1] Marder AR. .The metallurgy of zinc-coated steel [Review][J].Progress in materials science,2000(3):191-271.
[2] SANDLIN R W .Galvanizing characteristics of different types of steel[J].Wire and Wire Products,1941,16(01):28-35.
[3] CHEN Z W;KENNON N F;SEE J B .Technigalva and other developments in batch hot-dip galvanizing[J].JOM-Journal of the Minerals Metals and Materials Society,1992,44(01):22-26.
[4] 王辉.锌镍合金的研制及在含硅活性钢热镀锌领域的应用[J].中国有色冶金,2007(02):23-26,36.
[5] Fratesi R.;Ruffini N.;Malavolta M.;Bellezze T. .Contemporary use of Ni and Bi in hot-dip galvanizing[J].Surface & Coatings Technology,2002(1):34-39.
[6] 许乔瑜,桂艳,卢锦堂,孔纲,车淳山.热浸Zn-Ti合金镀层的显微组织与耐蚀性能[J].华南理工大学学报(自然科学版),2008(07):82-86.
[7] 魏云鹤,于萍,刘秀玉,崔巍,主沉浮,张长桥.钢基表面热镀锌镁合金镀层及其耐蚀性能研究[J].材料工程,2005(07):40-42.
[8] CHIDAMBARAM P R;RANGARAJAN V;VAN OOIJ W J .Characterization of high temperature hot dip galvanized coatings[J].Surface and Coatings Technology,1991,46(03):245-253.
[9] VERMA A R B;VAN OOIJ W J .High-temperature batch hot-dip galvanizing (Part 1):General description of coatings formed at 560 ℃[J].Surface and Coatings Technology,1997,89(1/2):132-142.
[10] VERMA A R B;VAN OOIJ W J .High-temperature batch hot-dip galvanizing (Part 2):Comparison of coatings formed in the temperature range 520-555 ℃[J].Surface and Coatings Technology,1997,89(1/2):143-150.
[11] Bicao P;Hanhua W;Xuping S;Zhi L;Fucheng Y .Effects of zinc bath temperature on the coatings of hot-dip galvanizing[J].Surface & Coatings Technology,2008(9):1785-1788.
[12] LU Jin-tang;CHE Chun-shan;KONG Gang;XU Qiao-yu CHEN Jin-hong .Influence of silicon on the α-Fe/Γ interface of hot-dip galvanized steels[J].Surface and Coatings Technology,2006,200(18/19):5277-5281.
[13] 李智,苏旭平,贺跃辉,谭铮,尹付成.Zn/Fe及Zn/Fe-Si固态扩散偶中金属间化合物的生长[J].中国有色金属学报,2008(09):1639-1644.
[14] 苏旭平,李智,尹付成,贺跃辉,潘世文.热浸镀中硅反应性研究[J].金属学报,2008(06):718-722.
[15] I. Isomaki;M. Hamalainen .Thermodynamic evaluation of the Co-Zn system[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2004(1/2):191-195.
[16] Marder AR. .The metallurgy of zinc-coated steel [Review][J].Progress in materials science,2000(3):191-271.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%