欢迎登录材料期刊网

材料期刊网

高级检索

基于疲劳裂纹尖端的应力和应变以及高强铝合金中不同尺度第二相性态对其延性的影响,建立了高强铝合金中粗大第二相、中间尺度第二相以及细小时效强化相性态与其疲劳裂纹扩展速率之间的多元非线性关系模型.结果表明:对于2024铝合金的疲劳扩展速率,该模型的预测趋势与他人的实验研究结果吻合良好.同时借助于对该模型的理论分析,提出了在确保高强铝合金强度不降低的前提下降低其疲劳裂纹扩展速率的优化方案.

参考文献

[1] 陈铮,刘兵,王永欣,魏齐龙.电场处理的强化晶界效应与唯象理论[J].稀有金属材料与工程,2001(05):331-334.
[2] 刘友良,沈健,张新民.Al-Li合金高温扭转变形行为[J].稀有金属材料与工程,2000(02):114-117.
[3] 刘刚,丁向东,孙军,陈康华.具有盘状析出相铝合金的时效强化模型[J].中国有色金属学报,2001(03):337-347.
[4] 张国君,刘刚,丁向东,孙军,陈康华.含有不同尺度量级第二相的高强铝合金拉伸延性模型[J].中国有色金属学报,2002(z1):1-10.
[5] Walker T J .A Quantitative Strain-and-Stress State Criterion for Failure in the Vicinity of Sharp Cracks[J].Nuclear Technology,1974,23:189-203.
[6] Parton V Z;Morozov E M.Elastic-plastic Fracture Mechanics[M].Moscow: Mir Publishers,1978
[7] Hahn G T;Hoagland R G;Rosenfiled A R .Local Yielding Attending Fatigue Crack Growth[J].Metallurgical and Materials Transactions,1972,3:1189-1202.
[8] Ke J S;Liu H W .Thickness Effect on Crack Tip Deformation at Fracture[J].Engineering Fracture Mechanics,1976,8:425-436.
[9] Davidson D L;Lankford J .Plastic Strain Distribution at the Tips of Propagating Fatigue Crack[J].Journal of Engineering Materials and Technology Transactions of the ASME,1976,1:24-29.
[10] Hutchinson J W .Singular Behavior at the End of a Tensile Crack in a Hardening Material[J].Journal of the Mechanics and Physics of Solids,1968,16:13-31.
[11] Glinka G .A Cumulative Model of Fatigue Crack Growth[J].International Journal of Fatigue,1982,4:59-67.
[12] Elber W.The Significance of Fatigue Crack Closure[J].ASME STP 468 Damage Tolerance in Aircraft Structures,1971:230-242.
[13] Fuehring H;Seeger T .Dugdale Crack Closure Analysis of Fatigue Cracks Under Constant Amplitude Loading[J].Engineering Fracture Mechanics,1979,11:99-122.
[14] Nakagaki M;Atluri S N .Elastic-plastic Analysis of Fatigue Crack Closure in ModesⅠand Ⅱ[J].AIAA Journal,1980,18:1110-1117.
[15] McCartney L N .A Note on Closure During Fatigue Crack Growth[J].International Journal of Fracture,1979,15:R21-R24.
[16] Suresh S.Fatigue of Materials[M].Cambridge:Cambridge University Press,1991:137.
[17] Majumdar B S;Pandey A B .Deformation and Fracture of a Particle-reinforced Aluminum Alloy Composite: Part I: modeling[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2000,31:937-950.
[18] Staley J T .Influence of Microstructure on Fatigue and Fracture of Aluminium Alloys[J].Aluminium,1979,55:277-281.
[19] Anon.Materials Data for Cyclic Loading Part D: Aluminum and Titanium alloys[M].Amsterdam: Elsevier Press,1987
[20] Broek D .Role of Inclusions in Ductile Fracture and Fracture Toughness[J].Engineering Fracture Mechanics,1973,5:55-62.
[21] Manabu Nakai;Takehiko Eto .New aspects of development of high strength aluminum alloys for aerospace applications[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2000(1/2):62-68.
[22] Truckner W G;Staley J T;Bucci R J .Effect of Microstructure on Fatigue Crack Growth of High-strength Aluminum Alloys[R].USAF Technical Report AFML-TR-96169,1976.
[23] Selines R J;Pelloux R M .[J].Metallurgical and Materials Transactions,1972,3:2525-2531.
[24] Edwards L;Martin J W.Strength of Metals and Alloys[M].Oxford:Pergamon Press,1982
[25] Edwards L;Martin J W .Effect of Dispersoids on Fatigue Crack Propagation in Aluminum Alloys[J].Metal Science Journal,1983,17:511-518.
[26] Suresh S;Ritchie R O .Propagation of Short Fatigue Cracks[J].International Metals Reviews,1984,29:455-476.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%