添加不同种类和含量的粘结剂, 通过冷压和热压方法, 结合炭化处理等不同工艺制备纳米碳管电极, 利用DC-5电池测试仪分析其在盐水中的充放电性能, 比较其电吸附比电容和等效电
阻, 发现当聚四氟乙烯(PTFE)的量为10%, 聚偏氟二乙烯(PVDF)的量为15%时, 电极可以冷压成型; 酚醛树脂(PR)的量为20%时, 电极可以热压成型, 随着粘结剂的增加, 电极在盐水中的电吸
附比电容降低, 等效电阻增大. 通过纳米碳管电极表面结构、形貌、亲水性及在盐水中电吸附电容和等效电阻的分析, 对其脱盐性能进行比较, 发现添加20%PR粘结剂热压成型电极经
炭化后, 其比表面积大, 内部孔隙丰富, 亲水性好, 在盐水中电吸附比电容大, 等效电阻小, 电吸附脱盐效果最为显著.
The carbon nanotube electrodes with different kinds and quantities of binders, using methods such as press molding at room-temperature and hot-press molding combined with carbonization, were
moulded. The charge-discharge tests of the electrodes were performed in saltwater by the DC-5 battery testing instrument, and the specific electro-adsorption capacitance and equivalent resistance
were compared. The results are as follows: the electrodes can be molded at room-temperature with 10% polytetrafluoroethylene (PTFE) or 15% polyvinylidene fluoride (PVDF) and at high temperature
with 20% phenolic resin (PR), and the specific electro-adsorption capacitance decreases and the equivalent resistance increases with the increasing content of the binders. The surface structure,
morphology, specific electro-adsorption capacitance, equivalent resistance and hydrophilicity of the electrodes were investigated, and the electro-adsorption desalination performances were compared.
The results show that the electrode hot-pressed with 20% PR, after carbonization, with high specific surface area, many pores, good hydrophilicity, high specific electro-adsorption capacitance and low
equivalent resistance, has the best electro-adsorption desalination performance.
参考文献
[1] | Semiat R, Galperin Y. Desalination, 2001, 140(1): 27-46. [2] Demircioglu M, Kabay N, Kurucaovali I, et al. Desalination, , 2003, 153 (1-3): 329-333. [3] Andelman M. Flow-through capacitor. US5192432, 1993. [4] Otowa T. Planar, flow-through, electric, double-layer capacitor and a method of treating liguid with capacitor.US5538611,1996. [5] Oda H, Nakagawa Y. Carbon, 2003, (41): 1037-1047. [6] Odani A, Nimberger A, Markovsky B, et al. Journal of Power Sources, 2003, 119-121: 517-521. [7] Cantalini C, Valentini L, Armentano I, et al. Journal of the European Ceramic Society, 2004, 24(6): 1405-1408. [8] Chen J, Li W, Wang D, et al. Carbon, 2002, (40): 1193-1197. [9] 施利毅, 谢建平, 刘函宇, 等. 一种利用纳米碳管制造电极的电容式海水淡化处理方法.CN1463927A, 2003. [10] Nakamura M, Nakanishi M, Yamamoto K. Journal of Power Sources. 1996, 60(2): 225-231. [11] Gamby J, Taberna P L, Simon P, et al. Journal of Power Sources, 2001, 101(1): 109-116. [12] Deyang Q, Hang S. J. Power Sources, 1998, (74): 99-107. [13] 王大志, 陈冠民, 徐才录, 等(WANG Da-Zhi, et al). 无机材料学报(Journal of Inorganic Materials), 2001, 16(4): 672-676. [14] 张彬, 马仁志, 徐才录, 等. 电子学报, 2000, 28(8): 13-15. [15] Li C, Wang D, Liang T, et al. Materials Letters, 2004, 58(29): 3774-3777. [16] 申文忠, 郑经堂. 碳素技术, 2002, 4: 5-9. [17] Nishino A. Tanso, 1988, 132: 57-71. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%