欢迎登录材料期刊网

材料期刊网

高级检索

通过热力学计算分析了分别使用NH4Cl和CrCl3·6H2O两种不同激活剂时, 各个共渗元素的卤化物蒸汽压分压的变化, 得到了实现Nb-Si基原位复合材料上Si-Cr-Y三元包埋共渗的最佳条件。采用包埋共渗法在Nb-Si基原位复合材料表面制备了Si-Cr-Y共渗涂层, 研究了涂层的组织形貌、 成分及其相组成。结果表明: 使用NH4Cl做激活剂, 通过调整包埋渗料的成分, 可以在适当的温度下实现Si-Cr-Y的三元共渗。当渗料成分为12Cr-6Si-0.75Y2O3-5NH4Cl-76.25Al2O3(质量分数)时, 在1350℃可以实现Si-Cr-Y三元共渗。制备的涂层具有多层结构, 分为外层、 内层和明显的互扩散层。互扩散层的存在, 表明涂层的形成是一个连续生长过程, 伴随着Cr、 Si、 Y元素向基体内的扩散。涂层的主要成分由Cr2(Nb,Ti)、 (Nb,Ti)5Si3和HfSi2组成, Y元素的添加起到了细化涂层的作用。

In order to identify suitable pack compositions for co-depositing Cr, Si and Y to form diffusion coatings on Nb-base in situ composites by the pack cementation process, thermochemical calculation was taken to analysis the vapour pressure of halide species generated in a series of pack powder mixtures activated by NH4Cl or CrCl3·6H2O at high temperatures. The Cr-Si-Y co-depositing coating layers on the Nb-base in situ composites were prepared according to the analysis. The microstructure, phase constituents and compositional distribution in the coatings were studied. The results show that by means of carefully controlling the composition of the packs activated by NH4Cl, co-deposition of Si-Cr-Y on Nb-Si in situ composites can be achieved at the appropriate temperature. It is demonstrated that the co-depositing coating can be formed at 1350℃ with the pack power mixtures composed of 12Cr-6Si-0.75Y2O3-5NH4Cl-76.25Al2O3(mass fraction). The coatings obtained have a multiple layer structure, consisting of an outer layer, an inner layer and a diffusion zone at the boundary between the coating and the substrate. It is suggested that the coating is formed via a sequential deposition mechanism through inward diffusion of Cr, Y and Si. The coatings are mainly composed of Cr2(Nb,Ti), (Nb,Ti)5Si3 and HfSi2, and the microstructure of the coatings can be refined by addition of Y2O3 in the pack mixtures.

参考文献

[1] Bewlay B P, Jackson M R, Zhao J C, Subramanian P R. A review of very high temperature Nb-silieide-based composites[J]. Metall Mater Trans A, 2003, 34(10): 2043-2052.
[2] Xiao L R, Cai Z G, Yi D Q. Morphology, structure and formation mechanism of silicide coating by pack cementation process [J]. Trans Nonferrous Metals Soc China, 2006, 16(sl): 239-244.
[3] 冯景苏.铌应用的新进展[J].稀有金属材料与工程,1994,23(3):7一12.
[4] Sarath E, Menon K, Madan G M. High temperature oxidation in muhicomponent Nb alloys [J]. Material Science Forum, 2005, 475-479: 717-720.
[5] 赵陆翔,郭喜平.铌基合金抗高温氧化研究进展[J].材料导报,2006,20(7):61-64.
[6] Nicholls J R. Advances in coating design for high performancegas turbines [J]. MRS Bulletin, 2003, 28(9): 659-670.
[7] Zelenitsas K, Tsakiropoulos P. Effect of A1, Cr and Ta additions on the oxidation behavior of Nb - Ti - Si in sltu composites at 800 :[J]. Materials Science and Engineering A, 2006, 416(12): 269-280.
[8] 郭金明,郭喜平,宋曙光.Nb-Ti-Si基多元合金在1250℃下的氧化行为[J].金属学报,2008,44(5):574-578.
[9] 赵群,于永泗.铌基合金的抗高温氧化性研究[J].材料导报,2003,17(2):29-31.
[10] Suzuki R O, Ishikawa M, Ono K. NbSiz coating on niobium using molten salt [J]. Journal of Alloys and Compounds, 2002, 336(1/2): 280-285.
[11] GlushkoP I, Semenov N A, Strigunovskii S V, et al. Oxidation resistance of niobium coated with titanium disilieide [J].Powder Metallurgy and Metal Ceramics, 2000, 39(11/ 12) : 360-362.
[12] 王禹,郜嘉平,李云鹏,等.铌合金硅化物涂层的结构及高温抗氧化性[J].无机材料学报,2000,15(1):143-149.
[13] 王禹,陈曼,郜嘉平,等.rri-cr-Si硅化物涂层结构及裂纹扩展[J].稀有金属材料与工程,2000,29(5):315-320.
[14] Fisher G, Datta P K, Burnell-Gray J S, Chan W Y, Soares J. The effects of active element additions on the oxidation performance of a platinum aluminide coating at 11002 [J]. Surface and Coatings Technology, 1998, 10(12) : 24-30.
[15] LiuAQ, Sun L, Li S S, Han Y F. Effect of cerium on mierostruetures and high temperature oxidation resistance of all Nb- Si system in-situ composite [JJ. Journal of Rare Earths, 2007, 25(4): 474-479.
[16] 田晓东,郭喜平.铌基超高温合金表面si-Al包埋共渗抗氧化涂层的组织形成[J].中国有色金属学报,2008,18(1):7-12.
[17] 田晓东,郭喜平.铌基超高温合金表面包埋si-Y共渗涂层的显微组织[J].金属学报,2008,44(5):585-588.
[18] 齐涛,郭喜平.铌硅化物基合金si-YzO.共渗涂层的组织形成[J].中国有色金属学报,2009,19(10):1822-1828.
[19] 乔彦强,郭喜平.H-Nb-si基超高温合金sI_cr共渗抗氧化涂层的显微组织[J].中国有色金属学报,2009,19(11):1993-1999.
[20] Xiang Z D, Rose S R, Datta P K. Codeposition of A1 and Si to form oxidation- resistant coatings on 7- TiAI by the packcementation process [J]. Materials Chemistry and Physics, 2003, 80(2): 482-489.
[21] Xiang Z D, Burnell-Gary J S, Dutta P K. Aluminide coating formation on nickel base superalloys by pack cementation process[J]. Mater Sci, 2001, 23(36): 5673-5682.
[22] Bianco R, Rapp R A. Pack cementation aluminide coatings on superalloys: Codeposition of Cr and reactive elements [J]. Electrochem Soc, 1993, 140(4): 1181-1190.
[23] Costa W D, Gleeson B, Young D J. Codeposited chromium- aluminide coatings [J]. Journal of the Electrochemical Society, 1994, 141(10): 2690-2698.
[24] Loo Van F J J, Rieck G D. Diffusion in the titanium- aluminium system I. Interdiffusionbetween solid A1 and Ti orTi-Alalloys [J]. ActaMetall, 1973, 21(1): 61-71.
[25] Loo Van F J J, Rieck G D. Diffusion in the titanium- aluminium system--II. Interdiffusion in thecomposition range between 25 and 100 at. % Ti[J]. AetaMetall, 1973, 21(1): 73-84.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%