通过浸渍吸附的方法,用桑蚕丝素-RGD融合蛋白(简称Silk-RGD)对多孔状磷灰石/丝素蛋白(HA/SF)复合支架材料进行表面修饰,研究了复合支架材料在不同浓度Silk-RGD蛋白溶液中浸渍后对两种不同成骨细胞MG-63和MC3T3-E1黏附、增殖和分化的影响。结果表明,Silk-RGD融合蛋白修饰的复合支架材料的细胞黏附性能显著高于未经修饰的对照组,且其促黏附性能具有Silk-RGD浓度依赖性;体外培养7天时,细胞增殖能力较对照组更显著,当Silk-RGD的吸附量为11μg/mg时,MG-63的增殖率较对照样提高了21%,MC3T3-E1提高了50%;而碱性磷酸酶活性检测结果显示,复合支架经Silk-RGD表面修饰后对MC3T3-E1细胞的分化有一定的促进作用,但对MG-63细胞的影响不明显。
A bombyx mori silk fibroin-RGD fusion protein was used to modify the porous hydroxyapatite/silk fibroin(HA/SF) composite scaffolds by soaking the scaffolds into the protein solution with different concentrations.The osteoblasts,MG-63 and MC3T3-E1 were seeded onto the silk-RGD modified HA/SF composite scaffolds in order to evaluate the cell adhesion,proliferation and differentiation on scaffolds.The results show that the cell adhesion property in the silk-RGD modified scaffolds is higher than that in the control(i.e.,unmodified scaffolds),and depended on the concentration of silk-RGD.After being cultured for 7 d in vitro,the proliferation rates of MG-63 and MC3T3-E1 cells increase by 21% and 50%,respectively,compared with the control.For MC3T3-E1 cells,the alkaline phosphatase(ALP) activity data show an improvement of cell differentiation on the scaffolds after the silk-RGD modification,but no significant difference is found for the MG-63 cells.
参考文献
[1] | Proter J R, Ruckh T T, Popat K C. Bone tissue engineering: A review in bone biomimeties and drug delivery strategies [J]. Biotechnol Prog, 2009, 25(6): 1539-1560. |
[2] | Cui F Z, Li Y, Ge J. Self- assembly of mineralized collagen composites [J]. Mater Sci Eng R, 2007, 57(1); 1-27. |
[3] | 张志斌,黎达光,苏智青,等.骨修复用聚磷酸钙/壳聚糖复合材料的合成及其细胞相容性[J].复合材料学报,2007,24(6):105-109. |
[4] | Suzuki S, Oldberg A, Hayman E G, et al. Complete amino acid sequence of human vitronectin deduced from cDNA: Similarity of cell attachment sites in vitronectin and fibronectin [J]. Embo J, 1985, 4(10): 2519-2524. |
[5] | Sofia S, McCarthy M B, Gronowicz G, et al. Functionalized silk-based biomaterials for bone formation [J]. J Biomed Mater Res A, 2001, 54(1): 139-148. |
[6] | 余贯华,计剑,王东安,等.RGD改性聚醚氨酯及其内皮细胞相容性的研究[J].高等学校化学学报,2005,26(6):1156-1161. |
[7] | Yao J M, Asakura T. Silks [M]// Wnek G E, Bowlin G L. Encyclopedia of Biomaterials and Biomedical Engineering. New York: Marcel Dekker Inc, 2004: 1363-1370. |
[8] | Vepari C, Kaplan D L. Silk as a biomaterial [J]. Prog Polym Sci, 2007, 32(8/9): 991-1007. |
[9] | Liu L, Liu J Y, Wang M Q, et al. Preparation and characterization of nano - hydroxyapatite/silk fibroin porous scaffolds [J]. J Biomater Sci: Polym Ed, 2008, 19(3) : 325- 338. |
[10] | Liu L, Liu J Y, Kong X D, et al. Porous composite scaffolds of hydroxyapatite/silk fibroin via two-step method [J]. Polym Adv Techol, 2011, 22(6): 909-914. |
[11] | 姚菊明,祝永强,李媛,等.桑蚕丝素-RGD融合蛋白的固态结构及其细胞粘附性分析[J].化学学报,2006,64(12):1273-1278. |
[12] | Kim U J, Park J Y, Kim H J, et al. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin [J]. Biomaterials, 2005, 26(15): 2775-2785. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%