欢迎登录材料期刊网

材料期刊网

高级检索

采用溶液法以SnCl4.5H2O和葡萄糖为原料合成了颗粒尺寸为几个纳米的超细Sn及SnO2颗粒分布于无定形碳基体的复合材料,并在溶液过程中引入少量石墨。采用XRD、SEM和TEM等材料结构分析方法和恒电流充放电等电化学测试方法分析研究了前驱体的煅烧温度和石墨的引入对获得产物的结构及其作为锂离子电池负极材料的电化学性能的影响。研究结果表明,在500~700℃的煅烧温度下获得的Sn/C及含少量SnO2的Sn/SnO2/C复合材料,由于其中的Sn及SnO2的超细纳米尺寸及碳基体的缓冲有效减小了Sn在脱嵌锂过程中的应变和粉化,使材料具有良好的循环性能。石墨的引入有效提高了复合材料的容量和循环稳定性。经500℃煅烧的复合电极材料相对于其它材料具有更高的容量,其首次可逆容量达520mAh/g,经初始几个循环后,容量趋于稳定,经100次循环后,容量保持在350mAh/g。

Uhrafine Sn and SnO and dispersed carbon matrix composites have been synthesized by a simple solution method using SnC14 · 5H20 and glucose as starting materials. Minor graphite is introduced in the composites during the.solution process. The size of the Sn and SnO2 particles is of several nanometers. Effects of calcination temperature and the addition of graphite on the structure and the electrochemical properties of the composites as the anode material for lithium batteries have been studied by using X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical testing of galvanostatic charge-discharge, etc. The results show that the Sn/C and Sn/SnO2/C composites calcined in the temperature range of 500-700℃ show favorable cycle stability due to the reduced stress of Sn and SnO2 during lithiation and delithiation which is attributed to the ultrafine size of Sn as well as SnO2 and the buffer from the carbon matrix. The introduction of graphite effectively improves the capacity and the cycle stability due to that it can reduce the particle size of the composites. The composite obtained at calcination temperature of 500℃ provides an initial reversible capacity of 520mAh/g and maintains a capacity of 350mAh/g after 100 cycles, which is higher than others.

参考文献

[1] Q. Si .A high performance silicon/carbon composite anode with carbon nanofiber for lithium-ion batteries[J].Journal of Power Sources,2010(6):1720.
[2] J.Cho .Porous Si anode materials for lithium reehargeable hatteries[J].Jorunal of Materials Chemistry,2010(20):4009-4014.
[3] Ching-Fei Li;Wen-Hsien Ho;Chi-Sheng Jiang;Chien-Chang Lai;Ming-Jia Wang;Shiow-Kang Yen .Electrolytic Sn/Li_2O coatings for thin-film lithium ion battery anodes[J].Journal of Power Sources,2011(2):768-775.
[4] Yi-Ruei Jhan;Jenq-Gong Duh;Su-Yueh Tsai .Synthesis of confinement structure of Sn/C-C (MWCNTs) composite anode materials for lithium ion battery by carbothermal reduction[J].Diamond and Related Materials,2011(3):413-417.
[5] Z.Wen;S.Cui;H Kim et al.Binding Sn-based nanoparticles on graphene as the anode of reehargeable lithium-ion batteries[J].Jorunal of Materials Chemistry,2012,22(08):3300-3306.
[6] Z.Wang;D.Luan;F.Y.C.Boey et al.Fast formation of SnO2 nanoboxes with enhanced lithium storage eapahility[J].Journal of the American Chemical Society,2011,133(13):4738-4741.
[7] Kang, J.-H.;Paek, S.-M.;Choy, J.-H. .Porous SnO_2/layered titanate nanohybrid with enhanced electrochemical performance for reversible lithium storage[J].Chemical communications,2012(3):458-460.
[8] Feng Dan Wu;Yong Wang .Self-assembled echinus-like nanostructures of mesoporous CoO nanorod@CNT for lithium-ion batteries[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,2011(18):6636-6641.
[9] Hao Liu;Guoxiu Wang;Jian Liu .Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,2011(9):3046-3052.
[10] Jeong-Hun Ju;Kwang-Sun Ryu .Synthesis and Performance of CuO with Complex Hollow Structure as Anode Material for Lithium Secondary Batteries[J].Journal of the Electrochemical Society,2011(7):A814-A817.
[11] Z.Wang;D.Luan;S Madhavi et al.a-Fe2O3 nanotubes with superior lithium storage capability[J].Chemical Communications,2011,47:8061-8063.
[12] Chao, SC;Yen, YC;Song, YF;Chen, YM;Wu, HC;Wu, NL .A study on the interior microstructures of working Sn particle electrode of Li-ion batteries by in situ X-ray transmission microscopy[J].Electrochemistry communications,2010(2):234-237.
[13] G.L.Xu;S R Chen;J T Li et al.A composite material of SnO2/ordered mesoporous carbon for the application[J].Journal of Electroanalytical Chemistry,2011,656(1-2):185,191.
[14] Hong-Ryun Jung;Wan-Jin Lee .Preparation and Characterization of Ni-Sn/Carbon Nanofibers Composite Anode for Lithium Ion Battery[J].Journal of the Electrochemical Society,2011(6):A644-A652.
[15] Min Gyu Kim;Soojin Sim;Jaephil Cho .Novel Core-Shell Sn-Cu Anodes for Lithium Rechargeable Batteries Prepared by a Redox-Transmetalation Reaction[J].Advanced Materials,2010(45):5154-5158.
[16] K.Ui;S.Kikuchi;Y.Jimba;N.Kumagai .Preparation of Co- Sn alloy film as negative electrode for lithium secondary batteries by pulse eleetrodeposition method[J].Journal of Power Sources,2011,196(08):3916-3920.
[17] Xuyang Wang;Xufeng Zhou;Ke Yao .A SnO2/graphene composite as a high stability electrode for lithium ion batteries[J].Carbon: An International Journal Sponsored by the American Carbon Society,2011(1):133-139.
[18] L.Ji;Z.Lin;B.Guo et al.Assembly of earhon-SnO2 coresheath composite nanofibers for superior lithium storage[J].Chemistry-A European Journal,2010,16(38):11543-11548.
[19] S. Yang;H. Song;H. Yi et al.Carbon nanotube capsules encapsulating SnO2 nanopartieles as an anode material for lithium ion batteries[J].Eleetroehimiea Acta,2009,55(02):521-527.
[20] Meng-Yuan Li;Yan Wang;Chun-Ling Liu .Synthesis of Carbon/Tin Composite Anode Materials for Lithium-Ion Batteries[J].Journal of the Electrochemical Society,2012(2):A91-A97.
[21] Chunyu Du;Meng Chen;Long Wang .Covalently-functionalizing synthesis of Si@C core-shell nanocomposites as high-capacity anode materials for lithium-ion batteries[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,2011(39):15692-15697.
[22] X. H. Huang;C. B. Wang;S. Y. Zhang;F. Zhou .CuO/C microspheres as anode materials for lithium ion batteries[J].Electrochimica Acta,2011(19):6752-6756.
[23] X.Zhu;Y.Zhu;S.Murali et al.Nanostruetured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries[J].Journal of the American Chemical Society Nano,2011,5(04):3333-3338.
[24] M.Gao;X.Chen;H.Pan et al.Ultrafine SnO2 dispersed carbon matrix composites derived by a sol-gel method as anode materials for lithium ion batterie[J].Electrochimica Acta,2010,55(28):9067-9074.
[25] I.A.Courtney;J.R.Dahn .Electrochemical and in Situ X-Ray diffraction studies of thereaction of uthium with tin oxide Composites[J].Journal of the Electrochemical Society,1997,144(06):2045-2052.
[26] X.W.Lou;J.S.Chen;P.Chen et al.One-pot synthesis of carbon-coated SnO2 nanoeolloids with improved reversible lithium storage properties[J].Jorunal of Materials Chemistry,2009,21(13):2868-2874.
[27] L.Balan;R.Schneider;J.Ghanbaja et al.Electrochemical lithiation of new graphite-nanosized tin particle materials obtained by SnCl2 reduction in organic medium[J].Electrochimica Ptcta,2006,51(17):3385-3390.
[28] Lin Zou;Lin Gan;Ruitao Lv .A film of porous carbon nanofibers that contain Sn/SnO_x nanoparticles in the pores and its electrochemical performance as an anode material for lithium ion batteries[J].Carbon: An International Journal Sponsored by the American Carbon Society,2011(1):89-95.
[29] Dong-Won Jung;Jae-Hun Jeong;Byung-Chul Cha .Effects of Ball-Milled Graphite in the Synthesis of SnO_2/Graphite as an Active Material in Lithium Ion Batteries[J].Metals and Materials International,2011(6):1021-1026.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%