Based on the Eulerian and the volume averaging methods, a mathematical model of macrosegregation formation with considering solid movement during solidification of large steel ingot is developed. The cases with and without solid movement are studied and compared. The result shows that the A segregation band results from a narrow channel that forms around the position where the solidified shell in the horizontal direction meets the one in the vertical direction, which serves as a barrier to the fluid flow, leading to the accumulation of solute. Effects of critical solid fraction and density of solid on evolution of macrosegregation are investigated. The results indicate that both the positive segregation in the A segregation band and the bottom negative segregation become more pronounced with the critical solid fraction increasing. As the density of solid increases, stronger macrosegregations occur at the upper and bottom parts of the ingot. However, the length of A segregation band is not increased with density of solid. Calculated results show good agreement with experimental ones, except a larger bottom negative segregation zone.
参考文献
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%