欢迎登录材料期刊网

材料期刊网

高级检索

以Spinodal分解为例,说明相变研究的重要意义.铁素体不锈钢中呈现400~550℃时效脆性的原由为Spinodal分解而非有序化.介绍了含不溶区间及Spinodal线的Fe-Cr相图.Mn-Al-C钢奥氏体经Spinodal分解显示抗拉强度和屈服强度分别增至1120 MPa和1080 MPa,伸长率约30%,值得给予关注.Cu-15Ni-8Sn和Cu-15Ni-8Sn-0.2Nb合金由于Spinodal分解和有序析出相呈显著强化,并具良好应力松弛,高的弹性模量和导电性.Cu-Ni-Sn经Spinodal分解还会出现胞状或条状组织,称非连续Spi-nodal分解,铝合金时效时也会发生Spinodal分解,Co_(45),Cu_(55)薄膜通过Spinodal分解显示18%的最大巨磁阻.

This paper illustrates the significance of phase transformation studies taking the spinodal decomposition as an example. The 400 ~ 550 ℃ aging embrittlement in ferritic stainless steels is attributed to the spinodal decomposition rather than the ordering, and Fe-Cr phase diagrams with miscibility gap and spidonal line are introduced. It is worthy to be noticed that the ultimate tensile strength and yield strength of Mn-Al-C steel can be increased to 1120 MPa and 1080 MPa, respectively, with elongation of 30% by apinodal decomposition of austenite. Cu-15Ni-SSn and Cu-15Ni-8Sn-0.2Nb alloys exhibit remarkable strength, good stress release ability and high elastic modulus as well as considerable electrical conductivity after subjecting spinodal decomposition and ordered phase precipitation. In Cu-Ni-Sn system, there may appear cellular or lamellar microstructure after spinodal decomposition and it is termed as discontinuous spinodal. In aging process of aluminum alloy, there may occur the spinodal decomposition. The maximum giant magnetoresistance was found to be 18% for a Co_(45)Cu_(55) thin film alloy through spinodal decomposition.

参考文献

[1] 徐祖耀 .热处理的基本理论-相变研究的新进展(一)[J].金属热处理学报,1980,1(01):1-14.
[2] 徐祖耀 .热处理的基本理论-相变研究的新进展(二)[J].金属热处理学报,1980,1(02):1-15.
[3] Williams R O .Further studies of the iron-chromium system[J].Transactions TMS-AIME,1958,212:497-4502.
[4] Williams R O;Paxton H W .The nature of ageing of binary iron-chromium alloys around 500 ℃[J].Journal of British Iron and Steel Inst,1957,185:358-3374.
[5] Marcinowski M J;Fisher R M;Szirmae A .Effect of 500 ℃ aging on the deformation behavior of an iron-chromium alloy[J].Transactions TMS-AIME,1964,230:676-689.
[6] Brenner S S;Miller M K;Sofia W A .Spinodal decomposition of iron-32at% chromium at 470 ℃[J].Sctipta Metall,1982,16:831-8836.
[7] Cook A J;Jones F W .The brittle constituent of the iron-chromium system[J].The Journal of the Iron and Steel Institute,1943,168:217-2226.
[8] Tagaya M;Nenno S;Nishiya Z .The iron-chromium superlattice[J].Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals,1951,B-15:235-2236.
[9] Hasumoto H;Saito H A;Sugihara M .On the anomaly of the specific heat at high temperature in the alpha phase alloys of iron and chromium[J].Science Reports of the Research Institutes Tohoku University:Series A,1953,5:203-2207.
[10] Imai A;Kumada K .Study on high chromium steel,Ⅰ:On the anomaly of solid solution of the iron-chromium system at high temperature Ⅱ:On the alpha solid solution of Fe-Cr system at high temperature[J].Science Reports of the Research Institutes Tohoku University:Series A,1953,5:218-226, 520-532.
[11] Josso E .Interpretation of the brittleness at 475 ℃ for Fe-Cr alloys[J].Comptes rendus de l'Académie des sciences,1955,240:776-7778.
[12] Pomey G;Bastein P .The transformation of iron-chromium alloys of roughly equiatomic composition[J].Revue De Metallurgie,1956,53:147-1160.
[13] Takoda S;Nagai E O .Mem Fac Eng[D].Nagoya University,1956.
[14] Fisher R M;Dulis E J;Carroll K G .Identification of the precipitates accompanying 885 °F embrittlement in chromium steels[J].Transactions AIME,1953,197:690-6695.
[15] Imai Y;Izumiyama M;Masumoto T .[J].Science Reports of the Research Institutes Tohoku University:Series A,1966,18:56.
[16] Chandra D;Schwartz L H .Mossbauer effect study of the 475 ℃ decomposition of Fe-Cr[J].Metallurgical and Materials Transactions,1971,2:511-5519.
[17] Nishizawa T;Hasebe M;Ko M .Thermodynamic analysis of solubility and miscibility gap in ferromagnetic alpha iron alleys[J].Acta Metallurgica,1976,27:817-828.
[18] Liu Xingjun;Hao Shiming .An analysis on interaction parameters of binary solid solutions[J].Calphad-computer coupling of phase diagrams and thermochemistry,1993,17:67-678.
[19] Miller M K;Hyde J M;Hetherington M G;Cerezo A,Smith G D W,Elliott C M .Spinodal decomposition in Fe-Cr alloys:Experimental study at the atomic level and comparison with computer models-Ⅰ.Introduction and methodology[J].Acta Metallurgica Et Materialia,1995,43:3385-33401.
[20] Hyde J M;Miller M K;Hetherington M G;Cerezo A,Smith G D W,Elliott C.M .Spinodal decomposition in Fe-Cr alloys:Experimental study at the atomic level and comparison with computer models-Ⅱ.Development of domain size and composition amplitude[J].Acta Metallurgica Et Materialia,1995,43:3403-33413.
[21] Hyde J M;Miller M K;Hetheringtun M G;Cerezo A,Smith G D W,Elliott C M .Spinodal decomposition in Fe-Cr alloys:Experimental study at the atomic level and eompariann with computer models-Ⅲ.Development of morphology[J].Acta Metallurgica Et Materialia,1995,43:3415-33426.
[22] Ujihara T;Osamura K .Kinetics analysis of epinodal decomposition process in Fe-Cr alloys by small angle neutron scattering[J].Acta Materialia,2000,48:1629-11637.
[23] Murayama M;Katayama;Y Hono K .Microstractural evolution in a 17 -4 PH stainless steel after aging at 400 ℃[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1999,30:345-3353.
[24] Wang Jun;Zou Hong;Li Cong;Qiu Shaoyu Shun Baoluo .The spinodal decomposition in 17-4PH stainless steel subjected to long-term aging at 350 ℃[J].Materials Characterization,2008,59:587-591.
[25] Benerji S K .An Austenitie stainless steel without nickel and chromium[J].Metal Progress,1978,113:59-562.
[26] Han K H;Choo W K .Phase decomposition of rapidly solidified Fe-Mn-Al-C nustenitic alloys[J].Metallurgical and Materials Transactions,1989,2OA:205-2214.
[27] Shun T;Wan C M;Byrne J G .A study of work hardening in austenitic Fe-Mn-C and Fe-Mn-Al-C alloys[J].ACTA METALLURGICA,1992,40:3407-33412.
[28] Han K H;Yoon J C;Choo W K .TEM evidence of modulated structure in Fe-Mn-Al-C austenitic alloys[J].Scripta Metallurgica,1986,20:33-336.
[29] Choo W K;Kim J H;Yoon J C .Microstructnral change in austenitic Fe-30.0wt% Mn-7.8wt% Al-1.3wt% C initiated by spinodal decomposition and its influence on mechanical properties[J].Acta Materialia,1997,45:4877-44885.
[30] Cahn J W .Hardening by spinodal decomposition[J].Acta Metallurgica,1963,11:1275-11282.
[31] Ditchek B;Schwartz L H .Application of spinodal alloys[J].Annual Review of Materials Science,1979,9:219-2253.
[32] Lougon J T .Tin and its uses[J].,1983,137:1.
[33] 江伯鸿;魏庆;徐祖耀;王承宝,许雄成 .Cu-15Ni-8Sn及Cu-15Ni-8Sn-0.2Nb Spinodal型弹性合金的研究[J].仪表材料,1989,2(05):257-264.
[34] J.-C.Zhao;M.R.Notis .Spinodal decomposition, ordering transformation, and discontinuous precipitation in a Cu-15Ni-8Sn alloy[J].Acta materialia,1998(12):4203-4218.
[35] Gronsky R;Thomas G .Discontinuous coarsening of spinodally decomposed Cu-Ni-Fe alloys[J].Acta Metallurgica,1975,23:1 163-11 171.
[36] Ramanarayan H;Abinandanan T A .Grain boundary effects on Spinodal decomposition Ⅱ:Discontinuous microstructures[J].Acta Materialia,2004,52:921-9930.
[37] Binder K;P Haason;刘治国.失稳分解[A].北京:科学出版社,1999:407.
[38] Shen K;Yin Z M;Wang T .On spinodal decomposition in aging 7055 aluminum alloys[J].Materials Science and Engineering A,2008,477:395-3398.
[39] Mebed AM;Howe JM .Spinodal induced homogeneous nanostructures in magnetoresistive CoCu granular thin films[J].Journal of Applied Physics,2006(7):74310-1-74310-5-0.
[40] TOSHIYUKI KOYAMA;TORU MIYAZAKI;ABD Et-AZEAM M. MEBED .Computer Simulations of Phase Decomposition in Real Alloy Systems Based on the Modified Khachaturyan Diffusion Equation[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,1995(10):2617-2623.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%