材料导报, 2008, 22(2): 22-25.
陶瓷晶须/聚合物基复合材料的研究进展
1.长沙理工大学材料科学与工程学院,长沙,410076;中南大学粉末冶金研究院,长沙,410083
2.长沙理工大学材料科学与工程学院,长沙,410076
{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"目前在日本,存在大量工业垃圾,包括各种塑料制品,ASR(汽车破碎垃圾),含有毒PCB(多氯联苯)的110变压器和PVC(聚氯乙稀)制品等.而来自城市垃圾焚烧炉的废气含有大量能量.因此,在充分考虑环境、避免二垩英生成的同时,安全回收来自工业垃圾、城市和/或工业垃圾焚烧炉的资源和能量是个非常重要的课题,这也将对抑制CO2排放作出贡献.正确地阐明焚烧过程中二垩英的生成机理及详细研究含少量二垩英的焚烧废气在冷却过程中大量形成二垩英的临界温度是项很重要的工作.解决这个问题可有效实现资源和能量的回收.本报告介绍日本在二垩英排放方面目前采取的对策和存在的问题以及大阪大学为阻止二垩英生成所做的基础研究工作.","authors":[{"authorName":"","id":"681ebb0e-0bfb-48f2-948a-4a5de4d26514","originalAuthorName":""},{"authorName":"","id":"33274d00-4eae-4a1a-9c12-638379c09ad8","originalAuthorName":""},{"authorName":"","id":"91ef62fe-0322-4af8-99eb-e06823f8d5d8","originalAuthorName":""},{"authorName":"","id":"06cc607d-f41c-4522-a38d-d6c090e92448","originalAuthorName":""},{"authorName":"","id":"4e65a218-06fb-46f5-88fa-d779da3895f5","originalAuthorName":""},{"authorName":"","id":"c503d0e5-2f0c-414a-9120-77f10220e0ca","originalAuthorName":""},{"authorName":"","id":"617a8d13-5be4-49cc-be5b-ad9767b8dde9","originalAuthorName":""}],"doi":"","fpage":"73","id":"a7cc9bd9-31ed-4afd-8581-856bab68b5bd","issue":"z1","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"b98575f9-5281-4e77-8b46-f3cb914462b4","keyword":"焚烧过程","originalKeyword":"焚烧过程"},{"id":"6bcbdfb8-08b4-4f42-a356-45cc29f7c48c","keyword":"工业垃圾和废钢","originalKeyword":"工业垃圾和废钢"},{"id":"d59ab526-d06c-477e-ad34-f20514361bc7","keyword":"二垩英生成机理","originalKeyword":"二垩英生成机理"},{"id":"5189833b-61b1-48aa-bcac-9f4af83aa4a1","keyword":"资助和能量回收","originalKeyword":"资助和能量回收"},{"id":"67f0f6b9-e9de-455b-aa05-2837400e5201","keyword":"抑制二垩英生成","originalKeyword":"抑制二垩英生成"}],"language":"zh","publisherId":"gt2003z1015","title":"二垩英与资源回收-Ⅰ考虑到二垩英生成的资源与能量回收基础研究","volume":"38","year":"2003"},{"abstractinfo":"正位移式能量回收装置利用盐水直接增压进料海水实现反渗透淡化系统余压能回收利用的同时,不可避免会产生盐水和进料海水间的混合.混合使得被增压海水的盐浓度升高,从而导致反渗透系统工作压力及淡化水盐浓度的增加.本文建立了能量回收装置水压缸中盐水和进料海水混合过程的数学模型,利用流体力学模拟软件对水压缸中混合段的形成、混合机理及混合段用作液柱活塞的条件等进行了研究,分析了液柱活塞的局限性和采用实体活塞的重要作用.","authors":[{"authorName":"王越","id":"019089f1-8449-454b-abf5-baa9bbad42fa","originalAuthorName":"王越"},{"authorName":"王世昌","id":"931956b0-e0de-493e-9b0a-8aca48743cfc","originalAuthorName":"王世昌"},{"authorName":"徐世昌","id":"fe77e314-de31-468a-a5bb-1ba2a31d393d","originalAuthorName":"徐世昌"}],"doi":"10.3969/j.issn.1007-8924.2005.06.009","fpage":"35","id":"49eeaa77-1a10-471f-aae5-fbcd5c22ef11","issue":"6","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"94d69880-00f5-43e2-a0d3-7296627dca65","keyword":"海水淡化","originalKeyword":"海水淡化"},{"id":"8d424631-20fc-4b77-a6b8-022788ccb635","keyword":"能量回收","originalKeyword":"能量回收"},{"id":"55ce1d44-0262-4887-9ed6-394c7193486c","keyword":"混合","originalKeyword":"混合"},{"id":"c8d0535f-8ace-44fd-8820-aa85f5cd459a","keyword":"液柱活塞","originalKeyword":"液柱活塞"}],"language":"zh","publisherId":"mkxyjs200506009","title":"反渗透海水淡化能量回收装置中盐水和海水混合过程研究","volume":"25","year":"2005"},{"abstractinfo":"针对膜蒸馏过程热效率低、耗能高的问题,设计了新型能量回收式膜蒸馏组件,其特点是膜蒸馏组件由中空纤维膜、换热管和隔网组成,通过换热管回收膜蒸馏过程的能量,通过隔网将中空纤维膜和换热管隔开,减少了膜蒸馏过程中热传导传递的热量,采用新型能量回收式膜蒸馏组件对质量分数3.0%的氯化钠溶液进行浓缩实验,考察膜管比例、组件长度以及空气隙宽度对膜蒸馏过程膜通量、造水比和热效率影响.实验结果表明,在原料液进料温度T1为40.0℃,T3为90.0℃,流量为10.0 L/h,气隙间隙为0.5 mm,换热管根数Nd/中空纤维膜根数Nm为2∶1时,膜通量为3.1 kg/(m2·h),造水比为4.3,热效率为85%.","authors":[{"authorName":"耿洪鑫","id":"bb46be54-cd21-4888-8608-62d75c4d71c1","originalAuthorName":"耿洪鑫"},{"authorName":"徐义明","id":"48d6655f-22de-4130-8656-5d51b1a672b2","originalAuthorName":"徐义明"},{"authorName":"李凭力","id":"33c26453-6f51-4d66-8dd9-9a10c8b6d9d8","originalAuthorName":"李凭力"},{"authorName":"黄益平","id":"8dddc222-5333-457d-9c60-8af68bb905fb","originalAuthorName":"黄益平"},{"authorName":"吴浩赟","id":"9dcc701e-df1c-425c-9eac-f11652762e12","originalAuthorName":"吴浩赟"},{"authorName":"陈英才","id":"2a8cd947-e54c-4c7a-80e6-96d644123a42","originalAuthorName":"陈英才"},{"authorName":"陆晓咏","id":"89181222-3c3e-4636-b059-d095d2ae27af","originalAuthorName":"陆晓咏"}],"doi":"","fpage":"85","id":"7b05528c-7b44-4cd9-b7cc-976a3fe67cac","issue":"2","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"623bd622-cf1e-4b66-91bc-e76a32cc293d","keyword":"能量回收","originalKeyword":"能量回收"},{"id":"2ac27c4d-8f6b-4587-aaee-b95ce6e5246d","keyword":"膜蒸馏","originalKeyword":"膜蒸馏"},{"id":"a72d1fd2-5ecb-4797-907b-0e752af58f2c","keyword":"盐水浓缩","originalKeyword":"盐水浓缩"}],"language":"zh","publisherId":"mkxyjs201402017","title":"能量回收式膜蒸馏组件的设计和性能","volume":"34","year":"2014"},{"abstractinfo":"介绍了用于海水反渗透淡化系统的余压能量回收器的工作原理,建立了相应的实验装置,研究了能量回收器工作流体的流量和压力的变化规律,分析了其中的变化原因,为今后能量回收器的设计和优化提供可靠的依据.","authors":[{"authorName":"王越","id":"54cd6730-0394-4ccf-ac64-ac492e32ad8e","originalAuthorName":"王越"},{"authorName":"徐世昌","id":"8d7f0a99-e506-4185-85fe-ab84f0dff942","originalAuthorName":"徐世昌"},{"authorName":"王世昌","id":"0b7ee8e0-3894-4a03-b105-90c22c5183a4","originalAuthorName":"王世昌"}],"doi":"10.3969/j.issn.1007-8924.2004.04.001","fpage":"1","id":"9f664e36-5d6b-4303-aa95-d62953b6f37c","issue":"4","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"893372c4-43ce-4913-995f-e3bd28b4c088","keyword":"反渗透","originalKeyword":"反渗透"},{"id":"40ef407b-aec4-4074-817d-e17ecadedfdd","keyword":"海水淡化","originalKeyword":"海水淡化"},{"id":"df44c1d4-f23b-4a03-872c-8c277470eb5a","keyword":"能量回收","originalKeyword":"能量回收"}],"language":"zh","publisherId":"mkxyjs200404001","title":"用于海水反渗透淡化系统的能量回收器的实验研究","volume":"24","year":"2004"},{"abstractinfo":"能量回收装置是反渗透海水淡化系统的关键设备之一,对降低系统运行能耗和造水成本至关重要.等压正位移式能量回收装置具有工程放大性好和高效率等优点,成为国内外研究和推广的重点.针对自主开发的反渗透海水淡化阀控能量回收装置进行了中试放大研究,结合能量回收装置在反渗透海水淡化工程中的应用工艺,建立了相应的装置运行试验平台.对装置在处理量为40 m3/h、工作压力为6.4 MPa条件下的流体力学特性和效率特性进行了测试和分析,结果表明,阀控能量回收装置运行稳定性良好,装置能量回收效率达到95.96%.","authors":[{"authorName":"王越","id":"8d706f37-3aa1-494a-b68b-a8ba3e312021","originalAuthorName":"王越"},{"authorName":"张燕平","id":"61eb92b5-6c96-4843-bea8-8c33b16139f1","originalAuthorName":"张燕平"},{"authorName":"王照成","id":"63f45bb3-2a4f-43a8-8a8e-f346e4990e22","originalAuthorName":"王照成"},{"authorName":"乞炳蔚","id":"ae915519-5623-4bab-8b9d-3eec714440ad","originalAuthorName":"乞炳蔚"},{"authorName":"徐世昌","id":"c931e595-6d42-48ef-8097-73b47d5c873b","originalAuthorName":"徐世昌"},{"authorName":"王世昌","id":"66b7d713-2580-48b4-ba95-51c7617306ba","originalAuthorName":"王世昌"}],"doi":"","fpage":"79","id":"62dcec4d-5a06-4b1c-b7b7-26f7c4411ac3","issue":"5","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"66d97427-dd63-47f0-9d0e-281acc9df80c","keyword":"反渗透","originalKeyword":"反渗透"},{"id":"074c536b-ccb2-4fb1-bec6-befb64214caf","keyword":"海水淡化","originalKeyword":"海水淡化"},{"id":"d2b2e853-e1f7-4906-b823-169b004ddcfd","keyword":"能量回收装置","originalKeyword":"能量回收装置"},{"id":"c0537867-f3cc-4180-8330-05689e55cdd6","keyword":"等压正位移","originalKeyword":"等压正位移"}],"language":"zh","publisherId":"mkxyjs201205014","title":"反渗透海水淡化阀控能量回收装置放大试验研究","volume":"32","year":"2012"},{"abstractinfo":"对某公司断裂失效的高炉煤气能量回收透平转子二级叶片的宏观形貌、化学成分、硬度、断口、显微组织进行了观察和分析,以找出其失效的原因。结果表明:叶片断裂属于疲劳断裂,疲劳裂纹起始于叶片进气边;叶片断裂的原因为所用材料与常规设计材料不同,且采取的热处理工艺不当;叶片表面由颗粒冲蚀产生的大量凹坑促进了疲劳裂纹的萌生,是疲劳裂纹形成的外因。","authors":[{"authorName":"陈常义","id":"8fd782ef-5947-43cc-a3a1-ca9a56cf1210","originalAuthorName":"陈常义"},{"authorName":"姚戈","id":"5132cd9c-e8ee-4aa2-8605-93e9a055984b","originalAuthorName":"姚戈"},{"authorName":"陈江","id":"ca90cf60-47a4-4386-a406-05e0e03c9bec","originalAuthorName":"陈江"}],"doi":"","fpage":"93","id":"ff453a69-b501-48d4-b79d-9c9fb21847ab","issue":"3","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"f6cde027-6b9a-4303-a8ce-3dfcf7fa4a04","keyword":"高炉煤气能量回收透平(TRT)","originalKeyword":"高炉煤气能量回收透平(TRT)"},{"id":"4917f0af-f9c9-4770-b93e-1a90b82471d7","keyword":"转子","originalKeyword":"转子"},{"id":"94f2440d-ed8c-4b9b-9b0f-afd6071c39dd","keyword":"二级叶片","originalKeyword":"二级叶片"},{"id":"e72ddd9a-2010-4a1a-8424-9aabd3dda9b3","keyword":"失效分析","originalKeyword":"失效分析"}],"language":"zh","publisherId":"jxgccl201203026","title":"高炉煤气能量回收透平转子二级叶片失效分析","volume":"36","year":"2012"},{"abstractinfo":"本文构建了由生物膜光合产氢反应器和单室无膜空气阴极微生物燃料电池组成的耦合系统,以葡萄糖溶液为底物(模拟废水)对上述系统的能量回收和污水处理持性进行了考察。实验发现,由于耦合系统各组成部分最佳性能时所要求的底物流量不同,使系统的能量回收与废水处理效率随运行工况的变化而体现出不同的特性。当底物流量为10 mL·h~(-1)时,耦合系统能量回收效率最大,为11.2%;而当底物流量为40 mL·h~(-1)时,耦合系统的COD去除效率和功率密度达到最佳,分别为76.4%和5.97×10~5 J·m~(-3)·h~(-1)。","authors":[{"authorName":"李俊","id":"2e054540-4d45-4274-9b1c-ae6ee9186e08","originalAuthorName":"李俊"},{"authorName":"徐众","id":"940af521-1ab0-48f8-aec8-71fee1dec428","originalAuthorName":"徐众"},{"authorName":"朱恂","id":"3c762c4d-d23e-42a2-978e-018225fa4fca","originalAuthorName":"朱恂"},{"authorName":"叶丁丁","id":"2384e4b0-af04-424a-89a1-f1bb81ee6f30","originalAuthorName":"叶丁丁"},{"authorName":"廖强","id":"80e66c08-8888-41cd-aa0f-ce2ef95c95ed","originalAuthorName":"廖强"}],"doi":"","fpage":"1043","id":"af8f03cd-e7e4-4465-b20b-a9fc0c15846d","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"1edd7997-fcc9-477b-a897-53437da490e0","keyword":"耦合系统","originalKeyword":"耦合系统"},{"id":"e918e518-c58d-4f87-8e09-1666642ea072","keyword":"光合产氢","originalKeyword":"光合产氢"},{"id":"80199017-9875-44b7-9d78-f24acaeb384d","keyword":"微生物燃料电池","originalKeyword":"微生物燃料电池"},{"id":"e5c27861-4995-4450-9e24-1e9b94ab9e1a","keyword":"废水处理","originalKeyword":"废水处理"}],"language":"zh","publisherId":"gcrwlxb201206035","title":"光合产氢-微生物燃料电池耦合系统的能量回收与废水处理特性","volume":"33","year":"2012"},{"abstractinfo":"为了提高真空管道高温超导磁浮列车的运行效率,减少能量损耗,本文采用将动能转化为振能机械能再转化为电能的方式回收车体的制动能量.在高温超导磁浮系统的永磁轨上按一定规律排列永磁体得到不均衡分布的磁场,在磁浮车底布置绕圈,当车体振动时线圈感应电动势向储能电容充电.仿真结果表明该方法的合理性与有效性,可以作为高温超导高速运行系统设计时的参考.","authors":[{"authorName":"马家庆","id":"87b5a36a-80bd-463f-9f15-f00a11eb934a","originalAuthorName":"马家庆"},{"authorName":"崔宸昱","id":"3e466340-24d4-4f98-aeed-a5edc8f8d5e7","originalAuthorName":"崔宸昱"},{"authorName":"周大进","id":"8eba198a-7be2-4fa4-9e02-e09e0295241e","originalAuthorName":"周大进"},{"authorName":"赵立峰","id":"984e3c4a-cc20-4641-9689-6db91f4fc879","originalAuthorName":"赵立峰"},{"authorName":"张勇","id":"97cc12b4-e1aa-47bf-8689-967468a0d198","originalAuthorName":"张勇"},{"authorName":"赵勇","id":"542a110d-5de2-4ce8-909d-546dec997a7c","originalAuthorName":"赵勇"}],"doi":"","fpage":"38","id":"8351f912-b543-44bf-933e-5f78f68ba35f","issue":"2","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"f6c8c138-a864-4403-aed6-9d272b198ffe","keyword":"高温超导","originalKeyword":"高温超导"},{"id":"1dca0b0b-8c03-46f6-9134-d27c87466774","keyword":"磁浮列车","originalKeyword":"磁浮列车"},{"id":"12e04bb1-9ea9-4575-9b45-607c7831f720","keyword":"永磁轨","originalKeyword":"永磁轨"},{"id":"bcb49480-1a14-4845-a5da-d9d68809c813","keyword":"线圈","originalKeyword":"线圈"},{"id":"95048368-758f-49f4-9fb3-3fab7b53120b","keyword":"感应电动势","originalKeyword":"感应电动势"}],"language":"zh","publisherId":"dwwlxb201702007","title":"基于振动耗能的真空管道HTS磁浮列车能量回收方法研究","volume":"39","year":"2017"},{"abstractinfo":"蛋白折叠液相色谱法(PFLC)用于变性蛋白质复性并同时纯化时对流动相组成及其洗脱条件的要求远较通常的液相色谱法高.用端基为PEG-200的高效疏水作用色谱固定相对重组人干扰素-γ(rhIFN-γ)进行纯化并同时复性,详细研究了流动相组成、梯度洗脱模式和流速对rhIFN-γ质量回收率和活性的影响.分别以3.0 mol/L(NH4)2SO4+0.05 mol/L KH2PO4(pH 7.0)和0.05 moL/L KH2PO4(pH 7.0)为流动相A和B,采用35 min非线性梯度洗脱时,所得rhlFN-γ的质量回收率最高.","authors":[{"authorName":"吴丹","id":"46b806a0-638f-4325-a042-3c170fe09b5a","originalAuthorName":"吴丹"},{"authorName":"王超展","id":"3bbc0175-f0ba-4968-88a4-26114063974c","originalAuthorName":"王超展"},{"authorName":"耿信笃","id":"1412af3c-ebda-4c09-b48f-056a6b52a0a5","originalAuthorName":"耿信笃"}],"doi":"10.3321/j.issn:1000-8713.2007.02.014","fpage":"197","id":"715d1906-529d-4d50-bc0d-311c68aaa82a","issue":"2","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"6052f721-7714-4912-ad25-016fe140d5f1","keyword":"高效疏水作用色谱法","originalKeyword":"高效疏水作用色谱法"},{"id":"315a0282-8e7c-489f-98c5-cb938fba2b4d","keyword":"流动相组成","originalKeyword":"流动相组成"},{"id":"20bcc066-1f8f-4704-a89d-0b3d53c992a2","keyword":"梯度洗脱模式","originalKeyword":"梯度洗脱模式"},{"id":"e845d9e3-a8eb-467e-bdaa-ad70c619049a","keyword":"纯化","originalKeyword":"纯化"},{"id":"8bb048b3-d787-4625-876b-467c55748f72","keyword":"复性","originalKeyword":"复性"},{"id":"ffb5c21f-f048-4148-8fbf-9d1b880e69d0","keyword":"质量回收率","originalKeyword":"质量回收率"},{"id":"996fb34d-ca8e-4f1b-896a-3e901490572b","keyword":"重组人干扰素-γ","originalKeyword":"重组人干扰素-γ"}],"language":"zh","publisherId":"sp200702014","title":"蛋白折叠液相色谱法中流动相对重组人干扰素-γ质量回收率的影响","volume":"25","year":"2007"},{"abstractinfo":"介绍了国内外复合材料废弃物的回收再利用方法,即化学回收、能量回收及物理回收.重点论述了流化床技术、热裂解技术和溶剂解离回收技术的化学回收工艺流程和研究现状.指出在国家政策指引下,应大力发展能耗小、回收率高的复合材料废弃物工业化回收工艺,实现废弃物的资源化回收利用.","authors":[{"authorName":"徐伟","id":"45c27e3a-39c0-4d6a-bdd8-48101a1c91b8","originalAuthorName":"徐伟"},{"authorName":"袁琨","id":"39ff2df3-e158-420e-b9c7-6ee30d423868","originalAuthorName":"袁琨"}],"doi":"","fpage":"102","id":"87ad39d4-5ff5-45f3-b177-cf065df3c707","issue":"2","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"a194dba3-44df-4a4b-ac47-87571ed8b19b","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"32b0f847-aca5-40eb-9196-dbc42fca6f3c","keyword":"纤维回收","originalKeyword":"纤维回收"},{"id":"02e54d8c-263e-4270-8c42-99d11b82edf8","keyword":"流化床","originalKeyword":"流化床"},{"id":"5715608b-fbac-4b41-851b-695db917ff52","keyword":"热裂解","originalKeyword":"热裂解"},{"id":"d108f15a-4f6a-44c2-ac18-519c0027ea9b","keyword":"溶剂解离","originalKeyword":"溶剂解离"}],"language":"zh","publisherId":"blgfhcl201302024","title":"复合材料废弃物回收技术发展","volume":"","year":"2013"}],"totalpage":15837,"totalrecord":158369}